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Abstract 

Forest structure is an important factor in the persistence of arboreal primates, and 

understanding the relationship between primate populations and habitat characteristics 

is essential for their conservation. Indonesia is experiencing one of the highest rates of 

deforestation globally, and with such a large amount of historical logging having taken 

place, only ~3.8% of the remaining forest is classified as primary. Sumatran lowland 

forests are one of the most threatened habitat types, though few studies have been 

conducted on primate populations within this habitat. The aim of the study was to 

ascertain forest vegetation structure between four different land units (hills, plains, 

alluvial and hill-swamp), and identify which structural variables are important indicators 

of habitat suitability for the two sympatric gibbon species, the lar gibbon Hylobates lar, 

and the siamang Symphalangus syndactylus. The field study was conducted from 1st 

March to 1st August 2016 within the Sikundur region of the Gunung Leuser National Park, 

North Sumatra, where both large and small-scale logging practices have been 

undertaken. At ten forest survey locations, auditory sampling methods using fixed points 

counts were used to produce hylobatid density estimations, and 4-6 vegetation plots per 

site were undertaken to identify differences in forest structure. Lar gibbon densities 

ranged from 1.19 – 3.56 groups/km2 and were found to be correlated with median tree 

height and crown area (F(9)= 5.604, p = 0.031, R2 = 0.459), and negatively correlated with 

frequency of trees <20m (F(9)= 6.775, p = 0.035, R2 = 0.616), and with canopy connectivity 

<15% (F(9)= 22.45, p = 0.001, R2 = 0.737). Siamang densities ranged from 0.40 – 2.11 

groups/km2, and were correlated with frequency of trees between 10-20m in height 

(F(9)= 5.576, p = 0.046, R2 = 0.411), and with canopy connectivity between 50% -75% (F(9)= 

5.930, p = 0.041, R2 = 0.426). These results indicate these hylobatid species exhibit a 

degree of tolerance and behavioural flexibility to habitat disturbance, though the 

preservation of tall trees and the provision of a significant amount of canopy connectivity 

is required for their continued presence in lowland forests. It is hoped that the results of 

this study will contribute to the preservation of Sumatran’s lowland forest, and the 

gibbon species that inhabit them.  

 

 

 

 



Table of Contents 
List of tables ............................................................................................................................. 1 

List of figures ............................................................................................................................ 3 

Chapter 1: Introduction ........................................................................................................... 6 

1.1: Relationship between primates and forest habitats  ................................................ 6 

1.2: Focus of Study ........................................................................................................... 8 

1.3: Research aims, objectives and hypotheses ............................................................... 8 

Chapter 2: Background .......................................................................................................... 11 

2.1: Introduction  ............................................................................................................ 11 

2.2: Tropical forest loss: Causes, threats and implications ............................................ 11 

2.3: South-east Asia deforestation ................................................................................. 12 

2.4: Anthropogenic effects of forest structure  .............................................................. 13 

2.5: Species response to structural change .................................................................... 15 

2.6: Primates relationships, adaptions and vulnerabilities to habitat structural change

 ....................................................................................................................................... 16 

2.7: Hylobatids ............................................................................................................... 18 

   2.7.1: Hylobatids and sleeping trees  .......................................................................... 20 

   2.7.2: Hylobatid feeding behaviours and adaptations ................................................ 20 

   2.7.3: Hylobatids and forest structure ......................................................................... 21 

2.8: Conclusion ............................................................................................................... 21 

Chapter 3: Methods ............................................................................................................... 23 

3.1: Study Species .............................................................................................................. 23 

3.1.1: Ecology  ................................................................................................................ 24 

3.1.2: Diet ....................................................................................................................... 25 

3.1.3: Locomotion .......................................................................................................... 25 

3.1.4: Vocalizations ........................................................................................................ 26 

3.2: Study Site .................................................................................................................... 26 

3.2.1: Location, temperature, rainfall and phenology  .................................................. 26 

3.2.2: History of disturbance .......................................................................................... 30 

3.2.3: Habitat characteristics ......................................................................................... 32 

3.3: Data Collection ............................................................................................................ 34 

3.3.1: Forest Structural Analysis  .................................................................................... 35 

3.3.2: Group density estimates of hylobatids................................................................. 35 

3.3.2.1: Auditory sampling ............................................................................................. 36 

3.3.2.2: Groups mapping ................................................................................................ 37 

3.3.2.3: Effective listening area (E) ................................................................................ 38 

3.4: Data Analysis ............................................................................................................... 39 



3.4.1: Standard Triangulation  ....................................................................................... 39 

3.4.2: SECR ..................................................................................................................... 39 

3.5: Statistical Analysis ....................................................................................................... 40 

3.5.1: Forest Structural Analysis ..................................................................................... 40 

3.5.2: Hylobatid density analysis .................................................................................... 40 

3.5.3: Relationship between hylobatid densities and forest structure ........................... 40 

Chapter 4: Results .................................................................................................................. 41 

  4.1: Forest Structural Analysis .............................................................................................. 42 

4.1.1: Normality tests  .................................................................................................... 42 

4.1.2: Structural differences between land units ........................................................... 42 

4.1.3: Correlations between vegetation variables ......................................................... 49 

4.1.4: Variation in tree heights and tree connectivity .................................................... 54 

4.2: Hylobatid Densities ..................................................................................................... 59 

4.2.1: Density estimation through standard triangulation method  .............................. 62 

4.2.2: Density estimates using gibbonSECR method ...................................................... 63 

4.2.3: Hylobatid densities in relation to vegetation variables ....................................... 65 

4.2.4: Multiple regression Analysis  ............................................................................... 66 

4.2.5: Relative density of hylobatids .............................................................................. 72 

4.2.6: Calling probabilities  ............................................................................................. 72 

Chapter 5: Discussion ............................................................................................................. 73 

5.1: Differences in forest structure .................................................................................... 73 

5.2: Hylobatid density Surveys ........................................................................................... 76 

5.3: Hylobatid density estimations through triangulation method ................................... 79 

5.4: Hylobatid density estimations through SECR ............................................................. 80 

5.5: Relationships between forest structure and gibbon density ...................................... 81 

5.6: Implications for forest conservation ........................................................................... 84 

5.7: Recommendations for future research....................................................................... 85 

Chapter 6: Conclusion ............................................................................................................ 86 

References 

 

 

 

 

 



Acknowledgements 

First of all, I would like to thank my supervisors Amanda Korstjens and Ross Hill, without 

whom this would not have been possible. I am so grateful for their continued patience 

and support, both whilst undertaking the fieldwork in Indonesia and additionally 

inproducing this thesis. I appreciate all the support and encouragement you have 

provided. I could not have asked for better supervisors.  

I would like to extend a special thank you to Matthew Nowak and the staff from the 

Sumatran Orangutan Conservation Programme (SOCP) for their help not only through 

the visa process, but the continued support they provided whilst I was in Indonesia. This 

study would not have been possible without their help. I would like to say a huge ‘terima 

kasih banyak’ to all the Sikundur field staff who provided help with both the language 

and logistics of undertaking this fieldwork, which would not have been possible without 

them. These include; Suprarudi Rimba, Supri, Ben, Logga, Rikki, Mister Ucok and Yangsa.  

Additionally, I would like to thank my co-worker Christopher Marsh, not only for help 

with collection of fieldwork but friendship and laughter whilst in Indonesia. An extra 

thank you goes to John Abernathy and James Askew who provided well needed laughter 

and support both at Sikundur and in Medan.  

I would also like to give a special thanks to my mom and Paul, who have always supported 

me in achieving my dreams. Their immense help this year both financially and 

emotionally has allowed me to undertake this study and get back on my desired career 

path. I could not have done this without you and appreciate this more than you will ever 

know.  

Last, but not least, I would like to thank my best friend Ellesse Janda; she never fails to 

make me smile every day and has been a huge support whilst writing this study. I couldn’t 

have done it without her.  

 

 

 

 

 



 
 



 
 

List of tables 

Table 3.1. Home range sizes, territory sizes and travel distance of the lar gibbon and 

siamang……………………………………………………………………………………………………………………P.25 

Table 3.2. Vegetation variables measured within each other the vegetation plots 

undertaken………………………………………………………………………………………………………………P.35 

Table 4.1. Summary showing number of vegetation plots, vocal arrays and individual 

trees measured during the study……………………………………………………………………………..P.42 

Table 4.2. Kruskal-Wallis non-parametric tests conducted on all continuous vegetation 

variables. Significant P-values are highlighted in bold………………………………………………P.44 

Table 4.3. Pair-wise comparison of the land units for all continuous vegetation 

variables. Significant P-values following sequential Bonferroni correction are 

highlighted in bold. 

………………………………………………………………………………………………………………………………..P.45 

Table 4.4. Summary of pairwise Mann-Whitney U post hoc tests on tree density between 

the different land units. Significant P-values following sequential Bonferroni correction 

are highlighted in bold and underlined……………………………………………………………….…….P.49 

Table 4.5. Summary of Spearman’s Rho Correlations on all continuous vegetation 

variables showing significance in all variables between the different land units. 

Correlations between variables showing, bold highlighted signify moderate correlations, 

* signifies strong correlations and **signifies very strong correlations…………….……….P.51 

Table 4.6. Summary of Spearmans Rho Correlations on tree density and all continuous 

vegetation variables…………………………………………………………………………………………………P.54 

Table 4.7. Summary of pairwise Mann-Whitney U post hoc tests on all tree height and 

connectivity categories between the different land units. Significant P-values following 

sequential Bonferroni correction are highlighted in bold and underlined………………….P.55 

Table 4.8. Results of triangulation method for calculating lar gibbon density within the 

survey area………………………………………………………………………………………………………………P.62 

Table 4.9. Results of triangulation method for calculating siamang density within the 

survey area………………………………………………………………………………………………………………P.62 

Table 4.10. Density estimates of Lar gibbon calculated from both triangulation and SECR 

and showing the order of magnitude difference………………………………………………….……P.64 

Table 4.11. Density estimates of Siamang calculated from both triangulation and SECR 

and showing the order of magnitude difference…………………………………………………………P64



 

Table 4.12. Pearson’s correlations between predictor variables (forest characteristics) 

and gibbon and siamang densities. ** signify highly significant correlations………………P.66 

Table 4.13. Stepwise Regression results of habitat variables on gibbon density. P-values 

highlighted in bold show significant relationship between density and vegetation 

variable……………………………………………………………………………………………………………………P.67 

Table 4.14. Stepwise Regression results of habitat variables on siamang density. P-values 

highlighted in bold show significant relationship between density and vegetation 

variables…………………………………………………………………………………………………………………..P.67 

Table 4.15. Stepwise Regression results of Tree Height variables on gibbon density. P-

values highlighted in bold show significant relationship between density and vegetation 

variables…………………………………………………………………………………………………………………..P.68 

Table 4.16. Stepwise Regression results of Tree Height variables on siamang density. P-

values highlighted in bold show significant relationship between density and vegetation 

variables…………………………………………………………………………………………………………………..P.68 

Table 4.17. Stepwise Regression results of Tree Connectivity variables on gibbon density. 

P-values highlighted in bold show significant relationship between density and 

vegetation variables…………………………………………………………………………………………………P.68 

Table 4.18. Stepwise Regression results of Tree Connectivity variables on Siamang 

density. P-values highlighted in bold show significant relationship between density and 

vegetation variables…………………………………………………………………………………………………P.69 

Table 5.1. Group Density Estimates of lar gibbons and siamangs showing comparisons 

from this study and past studies……………………………………………………………………………….P.78 

 

 

 

 

 

 

 

 



 

 

List of figures 

Figure 3.1. Left: Lar gibbon Hylobates lar vocalising, and on the right a Siamang 

Symphalangus syndactylus with an infant in Sikundur. Photo credit by A.H Korstjens and 

E.L. Hankinson………………………………………………………………………………………………………….P.24 

Figure 3.2. Lar gibbon (Hylobates lar) (after a photo series in Eimerl & DeVore, 614 1969, 

pp. 72-73). (Geissmann 2014)…………………………………………………………………………………..P.26 

Figure 3.3. Gunung Leuser National Park, the larger Leuser Ecosystem and the location 

of the Sikundur monitoring post (Nowak 2015)………………………………………………………..P.28 

Figure 3.4. The average rainfall and temperature for the Sikundur Monitoring Post from 

August 2013 – February 2015 (SOCP 2014)……………………………………………………………….P.29 

Figure 3.5. The average rainfall and percent fruit productivity for the Sikundur 

Monitoring Post from June 2013 – February 2015 (SOCP 2014)……………………………….P.30 

Figure 3.6. Forest loss in the Langkat District. The spatial data was collected from the 

Global Forest Watch website (www.globalforestwatch.org; Hammer et al. 2013; Hansen 

et al. 2013). The black circle shows the Sikundur monitoring post location and the study 

area………………………………………………………………………………………………………………………….P.31 

Figure 3.7. Study area. Coloured circles show habitat types and sample area locations. 

Bersitang village is located north-east of plains forest, with the Bersitang River running 

through the study area……………………………………………………………………………………………..P.34 

Figure 3.8. Example array mapping in QGIS. Different coloured dots signify separate 

gibbon groups and different coloured lines signify separate survey days………………….P.38 

Figure 4.1. Top Height of trees in each land unit. Boxes represent quartiles, whiskers 

indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.46 

Figure 4.2. Height of first bole of trees in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively…………………………………………………………………………………………………………….P.4.6 

Figure 4.3. DBH of trees in each land unit. Boxes represent quartiles, whiskers indicate 

95 percentile values and * and ᵒ represent the extremes and outliers, respectively….P.47 



Figure 4.4. Crown Area of trees in each land unit. Boxes represent quartiles, whiskers 

indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.47 

Figure 4.5. Connectivity of trees in each land unit. Boxes represent quartiles, whiskers 

indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.48 

Figure 4.6. Density of trees (>10cm DBH) in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.49 

Figure 4.7. Relationship between tree height (m) and height to first bole (m) for all trees 

(r = 0.790,  = 1418, p < 0.001)……………………………………………………………………………………P.52 

Figure 4.8. Relationship between DBH and tree height (m) for all trees (r =0.751, n = 1418, 

p<0.001)…………………………………………………………………………………………………………………..P.52 

Figure 4.9. Relationship between DBH and height to first bole (m) for all trees (r = 0.591, 

n = 1418, p<0.001)……………………………………………………………………………………………………P.53 

Figure 4.10. Relationship between DBH and crown area (m2) for all trees (r = 0.606, n = 

1418, p<0.001)…………………………………………………………………………………………………………P.53 

Figure 4.11. Tree height <20m (>10cm DBH) in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.55 

Figure 4.12. Tree height >20m <30m (>10cm DBH) in each land unit. Boxes represent 

quartiles, whiskers indicate 95 percentile values and * and ᵒ represent the extremes and 

outliers, respectively………………………………………………………………………………………………..P.56 

Figure 4.13. Tree height >30m (>10cm DBH) in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.56 

Figure 4.14. Tree Connectivity <25% in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.57 

Figure 4.15. Tree Connectivity >25% <50% in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.57 



Figure 4.16. Tree Connectivity >50% <75% in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.58 

Figure 4.17. Tree Connectivity >75% in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, 

respectively……………………………………………………………………………………………………………..P.58 

Figure 4.18. Approximate location of each gibbon vocalisations. Each coloured circle 

represents a separate identified group. Different coloured arrays represent habitat 

types; green = plains, red = hills, blue = alluvial, purple = hill-swamp……………………….P.60 

Figure 4.19. Approximate location of each siamang vocalisations. Each coloured circle 

represents a separate identified group. Different coloured arrays represent habitat 

types; green = plains, red = hills, blue = alluvial, purple = hill-swamp………………………….P.61 

Figure 4.20. Lar gibbon and siamang densities in all survey locations…………………………P.63 

Figure 4.21. Significant linear relationship between lar gibbon density and tree crown 

area (m2)………………………………………………………………………………………………………………….P.69 

Figure 4.22. Significant negative linear relationship between lar gibbon density and tree 

connectivity <15%.........................................................................................................P.70 

Figure 4.23. Significant negative linear relationship between gibbon density and tree 

height <20m…………………………………………………………………………………………………………….P.70 

Figure 4.24. Significant negative linear relationship between siamang density and tree 

connectivity between 50-75%......................................................................................P.71 

Figure 4.25. Significant negative linear relationship between siamang density and tree 

height between 20-30m……………………………………………………………………………………………P.71 

Figure 4.26. Relative Density of Siamang in relation to gibbon density between the four 

land units…………………………………………………………………………………………………………………P.72 

 

 

 

 

 

 

 



 

 

 

1. Introduction 

South-east Asian rainforests are home to a significant proportion of the world’s 

biodiversity and demonstrate high species richness and endemism (Wilcove et al. 2013). 

Many of these areas have become the last strongholds for numerous unique, 

endangered species and encompass approximately 25% of the world’s flora and fauna 

(Woodruff 2010). However, these forests are in rapid decline, and are experiencing one 

of the highest rates of forest loss across the globe (Sodhi et al. 2010). In Indonesia alone, 

Margono et al (2014) recorded a loss of 0.84MHa of primary forest in 2012, with 51% of 

this occurring in lowland forests. If the current rate of habitat loss is maintained, the 

region could lose 75% of its forests and 42% of its biodiversity by 2100 (Sodhi et al. 2010). 

With habitat loss being a significant threat, many forest species are critically endangered 

and are at a high risk of extinction. Anthropogenic activities are the primary causes of 

this loss including complete clearance of forest areas for large scale plantations and 

intensive logging practices. These logging practises (both intensive and selective) alter 

the structure of the remaining forest by removing only the large target tree species (Hall 

et al. 2003). This in turn alters species composition and micro-climate, increases ‘edge 

effects’, creates canopy gaps and modifies understorey vegetation. In Indonesia, such a 

large amount of historical logging has taken place that only approximately 3.8% of 

remaining forest has been classified as primary (Cheyne et al. 2013).  It is therefore 

important to increase our understanding of how this ecosystem will respond and/or 

adapt to these structural changes, and how this will affect endemic forest dwelling 

species; especially arboreal species, such as the gibbons, that depend on the vertical 

structure of the forest in order to maintain sustainable populations.  

 

1.1: Relationship between primates and forest habitats  

Primates are a highly-threatened taxon with a large number of species being 

dependent upon tropical forest ecosystems. Almost 90% of all primate species are found 

within this biome, and worryingly, more than half of the extant species are threatened 

by extinction (Chapman and Peres, 2001). Primates inhabit a variety of forest types 

including lowland and montane rainforests, savannah, woodland and swamp forest, each 



with their own distinct structural characteristics (Mittermeier et al. 2013). The evolution 

of both forest habitats and primates are closely linked; with each habitat’s distinct 

characteristics leading to specific morphological and behavioural developments, 

allowing for the adaption of an arboreal lifestyle (Gouveia et al. 2014). Currently, some 

of the most threatened primate species survive only in fragmented forest habitats, 

therefore understanding the ecological flexibility within and across species and 

adaptation limits in terms of survival are extremely important (Anderson et al. 2007) and 

necessitate further investigation. South-east Asia has more critically endangered primate 

species than any other tropical region (IUCN 2015) and as unhabituated arboreal 

primates are difficult to census and study (Brockelman and Srikosamatara 1993), data on 

population sizes are lacking in many areas (O’Brien et al. 2003). Even though forest loss 

and degradation is known to negatively impact most forest dwelling primates 

(Phoonjampa et al. 2011) it is difficult to quantify the effects of forest degradation due 

to the lack of any long-term data. Some primate species exhibit morphological 

adaptations and behavioural plasticity to allow them to subsist in these structurally 

modified habitats, although others appear to be more vulnerable due to greater 

specialisation both morphologically and behaviourally (Marsh et al. 2016).  

The main factors influencing population size and abundance of primate species 

in forest habitats are food availability, predation and disease, though population 

densities are also highly correlated with forest structure (Hamard et al. 2010; Poonjampa 

et al. 2011).  Arboreal species that rely on the forest canopy for food, travel and sleeping 

sites are more affected by habitat disturbance than other terrestrial forest dwelling 

species. This is especially true for the hylobatidae family (gibbons and siamangs) which 

spend the majority of their life high in the canopy, rarely descending to the ground 

(Bartlett 2007). These apes are obligate canopy dwellers, and require intact canopy 

structure for all aspects of their behavioural ecology (Cheyne 2010; Hamard et al. 2010; 

Marshall 2010).  

The survival of all extant gibbon species are threatened by habitat loss from 

anthropogenic factors and although several species are the focus of behavioural and 

ecological studies (Brockelman and Srikosamatara 1993; Chivers 1984; Mitani 1990; 

Bartlett 2007; Cheyne 2007a), there is still little understanding of their resilience to forest 

disturbance (Lee et al. 2014). The majority of gibbon species are allopatric except for the 

sympatric lar gibbon Hylobates lar, and siamang Symphalangus syndactylus, which live 

in Sumatra and peninsular Malaysia (Cheyne 2010). Although the lar gibbon is most 



widespread in its Sumatran range, it is listed as Endangered by the IUCN (IUCN 2015) 

almost certainly due to this island having the highest deforestation rates in South-east 

Asia (Miettinen et al. 2011). Although imperative to gibbon conservation initiatives, 

there are still relatively few population estimates for the species in Sumatra, especially 

within the lowland forests (Lee et al. 2014; O’Brien et al. 2004).  

 

1.2: Focus of Study 

Relationships between vegetation structure and population densities have been 

found for several primate species (Phoonjampa et al. 2011) and recent studies have 

suggested such relationships between forest structure and gibbon populations exist as 

well (Hamard et al. 2010; Lee et al. 2014). Furthermore, gibbons are highly territorial, 

suggesting groups may remain within their former ranges even following intensive forest 

disturbance such as the removal of a high proportion of trees (Cheyne et al. 2013) as 

documented in orangutans (SOCP 2014). For this reason, alongside their ecological 

characteristics (long maturation and inter-birth intervals, highly frugivorous feeding 

behaviour and large territory size) their recovery ability from large population crashes is 

reduced (Phoonjampa et al. 2011; O’Brien and Kinnaird 2011). Therefore, it is imperative 

that research into this area is undertaken urgently to preserve these endangered apes. 

Investigation into the spatial distribution of the species in relation to canopy and 

vegetation structure will provide information and improve our understanding on habitat 

preferences and levels of adaptability, as well as providing a baseline population 

estimate for Sumatran lowland forests. 

 

This study was undertaken in a Sumatran lowland dipterocarp rainforest located in the 

Gunung Leuser National Park (GLNP), Sumatra. The GLNP is 7927km2 and is located 

between the boundaries of Northern Sumatra and Aceh provinces. Several arboreal 

primate species reside here including; the lar gibbon, siamang, thomas leaf monkey 

Presbytis thomasi, two macaque species Macaca spp, and the critically endangered 

Sumatran orangutan Pongo abelii.  

 

1.3: Research aims, objectives and hypotheses  

The aim of this study was to ascertain forest structure and group density of the 

lar gibbon and siamang within a block of lowland forest in the Sikundur region of North 

Sumatra, Indonesia. It is anticipated that this study will provide an understanding of how 



forest structural characteristics influence habitat choice of primates. Understanding the 

relationship primates have with their environment will provide a valuable insight into 

the level of habitat disturbance these species can tolerate, and the effect this will have 

on their survival ability. This information can assist in the planning and implementation 

of future conservation strategies that will benefit both arboreal primates and Sumatra’s 

highly threatened lowland tropical forests. This will be achieved through the following 

objectives: 

 

1. Identify differences in rainforest structure between four different forest types 

located within the Sikundur lowland forest of the GLNP. These are hill forest, 

plains forest, alluvial forest and hill-swamp forest. This will be established 

through measurements of various vegetation structural features.  

 

2. Estimate group densities of two sympatric hylobatid species in each survey 

area and forest type, and identify any relationships between species densities in 

association with each other.   

 

3. Compare results of two different gibbon density estimation methods; 

triangulation and Spatially Explicit Capture-mark Recapture (SECR). 

 

4. Identify relationships between forest structural characteristics and hylobatid 

density to ascertain ecological requirements and habitat preferences to allow 

species’ survival. 

 

Consequently, this study’s hypotheses are: 

 

1. Forest types will show structural differences through various vegetation 

characteristics including; tree height, stem diameter, connectivity, crown 

area and tree density. Additionally, forest disturbance through historical 

logging is expected to have had an effect on forest vegetation, resulting in 

fewer taller trees and a less connected canopy in these areas.  

 



2. There are several different methods for estimating density in wild primate 

populations based on fixed point measurements, though the accuracy of 

these methods is difficult to assess. It is expected that densities calculated 

from these two estimation methods will not show significant differences in 

densities to each other.  

 

3. Primate densities will differ within and between habitat types. It is expected 

that areas with the most stratified, structurally complex and uninterrupted 

canopies will have the highest primate densities, whilst low forest with large 

canopy gaps will hold the lowest primate densities.  As these species’ live 

sympatrically it is expected that less disturbed, highly stratified structurally 

complex, uninterrupted canopies with necessary ecological requirements 

will allow the species to co-exist in closer proximity when compared to more 

disturbed, less structurally complex habitat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2: Background 

2.1: Introduction 

Deforestation and habitat fragmentation have been identified as one of the 

biggest drivers of global biodiversity loss (Norscia and Palagi 2010). Forest loss and 

modification has placed significant pressure on the remaining rainforest ecosystems. 

This is especially prevalent in south-east Asia, where ~15% of the world’s tropical forests 

are located (FAO, 1995). South-east Asia’s tropical forests make up the one of the last 

strongholds for many important populations of endemic and specialist species (Lee 

2009), and how these animals are responding to habitat changes alongside their 

adaption abilities is of crucial importance if we are to prevent future mass extinctions. 

These habitats are essential in aiding ‘species restocking’ of restored forest and human 

dominated landscapes, and this can only be achieved if large, healthy populations are 

surviving in these increasingly remnant environments. Further research within this area 

of study can provide information on adaptation levels of species, as well as identifying 

the necessary requirements needed within a habitat to ensure species’ survival. 

Research into the distribution and abundance of south-east Asian biodiversity in relation 

to anthropogenic impacts will highlight how well native species might survive in human 

dominated landscapes in the future, providing information and management strategies 

to enable conservation initiatives to be implemented to achieve this. 

 

2.2: Tropical forest loss: causes, threats and implications 

Tropical rainforests are one of the most threatened habitat types, with between 

8-12 million square kilometres (35%-50%) of original closed canopy tropical forest 

already lost (Wright and Muller-Landau 2006). Forests are recognised for their high 

biological diversity, their role in maintaining global climate cycles, regional and local 

weather patterns and precipitation levels, as well as providing some of the most 

important ecosystem services to the planet. The main drivers of tropical forest loss are 

anthropogenic activities; clearing vast expanses of land for the growing global demand 

for food, biofuel and other commodities (Sodhi et al. 2010), which in turn leads to 

massive biodiversity declines and endemic species extinctions. Conversion causes 

notable changes in forest structure and ecosystem processes; i.e land-atmosphere 



interactions, global carbon budget, hydrological cycles and soil properties have all been 

shown to be significantly impacted by land use changes in forests (Reiners et al. 2015). 

Additionally, tropical forests contain over 30% of global carbon stocks (Dura et al. 2013), 

consequently significant modifications and destruction of these hugely important 

ecosystems will have a major impact on the global carbon cycle and climate change 

worldwide.   

 

2.3: South-east Asia deforestation 

Although a worldwide phenomenon, South-east Asia has one of the highest rates 

of deforestation (Gaveau et al. 2009a) due to the continued escalations and expansions 

in agriculture, logging, fragmentation and urbanisation. Between 1990 and 2010, Stibig 

et al (2014) documented a loss of 6.5% of the region’s land area, equivalent to forest loss 

of ~320,000km2. Anthropogenic threats to these forests are increasing in severity, 

putting enormous pressure on the remaining intact forests and their biodiversity, with a 

plethora of species declines and extinctions predicted in this region if the present rate of 

deforestation continues (Sodhi et al. 2010; Sodhi and Brook, 2006b). The major drivers 

of deforestation within South-east Asia include the rapid expansion of oil palm 

plantations and paper and pulp industries at the expense of lowland dipterocarp forests. 

Clearing of these lowland forests, as well as increased droughts and forest fires has 

become a major source of global carbon emissions. These changes bring with them a 

number of issues exacerbating the problem, including the construction of infrastructure 

and roads, with increasing disturbance levels within forests from human traffic.  

The construction of roads due to logging and connection of human habituation 

significantly fragments forest complexes and consequently disrupts habitat use and 

behavioural patterns of many species, especially mammals (Austin et al. 2007; Laurance 

et al. 2009). Animals are killed through vehicle collisions, their hunting and foraging 

patterns disturbed and the creation of canopy gaps restrict the movement of particular 

primates, as well as providing greater accessibility to hunters and poachers targeting 

threatened animals (Pattanavibool and Dearden 2002; Wich et al. 2008). Many mammals 

learn to avoid roads as a survival technique, and studies show occurrences of species 

negatively correlate with distance to roads (Linkie et al. 2008). This reduces ‘useable’ 

habitat even more, and potentially causes both intra- and inter-specific competition in 

species, as individuals are forced to share territories and compete over reduced 

availability of food resources and favoured sleeping sites.  



Another major factor in reducing abundance of species comes from the 

establishment of human settlements around the edges of forest reserves. These 

settlements scare away and disturb species, consequently contracting species’ home 

range. A study by Ngoprasert et al (2007) showed habitat use by leopards in a Thai 

National Park increased with distance from human settlements. Therefore, the 

conservation of Asian tropical lowland forests is a matter of urgency, both to mitigate 

against climatic change and carbon emissions and to conserve biodiversity (Wich et al. 

2008).  

In order to curb losses in forest cover, governments and conservation 

organisations have established networks of protected areas, restricting human access 

and activities through law enforcement (Gavaeu et al. 2009b). However, these areas 

cover less than 17% of the total land cover of South-east Asia, and the laws are not always 

enforced, with many illegal activities continuing inside the boundaries of these reserves 

(Nowak 2015). Not only is South-east Asia’s annual deforestation rate the highest in the 

tropics, but it has increased between the periods 1990–2000 and 2000–2005, and is still 

increasing at present. This could result in projected losses of 13–85% of biodiversity in 

the region by 2100 (Sodhi et al. 2010).  

The highest forest losses recorded in south-east Asia occur within Indonesia. A 

study undertaken by Miettinen et al. (2011) identified areas with extreme levels of 

deforestation include the peat swamps of Borneo and the eastern lowland forests of 

Sumatra, which additionally have one of the highest biodiversity values of any terrestrial 

ecosystem (deWilde and Duyfjes, 1996). High levels of disturbance within these 

Sumatran lowland forests are attributed to their relatively easy accessibility in contrast 

to other areas and even though they are under threat, remain largely understudied in 

comparison. Less than a quarter of Sumatra’s landmass remains forested (Miettinen et 

al. 2011) and over the past decade alone, 6.2 million hectares of Sumatra’s forests have 

been assigned to oil plantations (YOSL-OIC 2009). 

 

2.4: Anthropogenic effects on forest structure 

As well as the complete clearance of forests, the structure of forests is changing 

through human activities, in particular selective logging (Hall et al. 2003). Selective 

logging homogenises forests, creating a simplified vertical structure and lower species 

richness (Norris et al. 2010). This practice is the greatest anthropogenic threat to 

remaining forested areas, and the impacts on vegetation structure varies depending on 



the method used, spatial scale, size and amount of timber harvested (Sodhi et al. 2010). 

Plants inevitably are the first organisms to be impacted upon, and the ones that are the 

most important for the overall ecosystem stability, structure and function, playing an 

important role in nutrient cycling, maintaining soil structure and flood regulation 

(Cardinale et al. 2012). Although logging does not result in a dramatic loss of vegetation 

cover in comparison to complete land clearance, logging activity can cause a marked 

disruption and small-scale fragmentation of the forest under-storey (Pereira et al. 2002) 

due to the production of large clearances. This decreases canopy continuity and tree 

density by removal of the large emergent trees (Kakati et al. 2009). Logged forests have 

a lower canopy height, which indirectly alters micro-climate, humidity, increases ‘edge 

effects’ and increases the recruitment of under-storey vegetation. Clearances provide 

the perfect conditions for shade intolerant species to grow as they fair better from the 

change in climatic conditions and become dominant. Invasive species from farm and crop 

land also colonise such areas.  

Plant species configuration changes as well with clearances, leading to 

compositional changes in the number of specialised and endemic species that survive. 

The once dominant native tree saplings are outcompeted by the invasives, preventing 

future re-colonisation and decreasing plant species diversity. Edge effects (the product 

of forest fragmentation) cause many abiotic (microclimate and light availability) and 

biotic effects (leaf turn over, nutrient cycling and dispersal) to both the flora and fauna 

of a habitat (Kunert et al. 2015). Creating edges exposes the forest to other potential 

threats, both natural and anthropogenic, including higher susceptibility to natural 

disasters, decreased food resources and an increase in hunting through enhanced 

visibility. The structure of upper storey vegetation has also been shown to influence 

recovery abilities from past disturbance, dependent upon the duration and extent of the 

logging undertaken (Barbeito et al. 2009). The detrimental impacts of selective logging 

can extend for many years, especially when considering that forest structural properties 

and deep canopies associated with wildlife habitats are not likely to be regained for 30–

50 years post logging (Broadbent et al. 2008). Impacts of selective logging vary between 

countries; some showing little effect and others displaying large negative effects on 

vegetational structure and composition (Sodhi et al. 2010; Hall et al. 2003). Usually 

selective logging targets specific large tree species, causing local extinctions due to 

poorly planned, exhaustive timber extraction and loss of essential seed banks required 

for regeneration. Hall et al. (2003) found after 18 years’ post-harvest in a Cameroon 



forest, areas had significantly lower densities of African mahogany (target species for 

logging), with a very low number of seedlings. Other effects include trees not recovering 

to their original height from micro climate changes, decreases in soil nutrient levels, and 

remaining trees becoming the ‘living dead’; they exist but cannot reproduce due to lack 

of pollination and dispersal from declines in faunal seed dispersers. However, Berry et 

al. (2008) found tree diversity in a Bornean forest was not significantly affected 20 years 

after logging. Nevertheless, high tree diversity does not necessarily equate to high 

conservation value. Old growth forests have less floristic diversity but contain higher 

abundances of range-restricted species (Slik et al. 2004), and these can be hugely 

important for specialised forest fauna.  

 

2.5: Species responses to structural changes 

Species vary in their response to forest degradation depending on a variety of 

factors, features and functional processes which the animal needs to survive (Fischer and 

Lindenmayer 2007). These include but are not limited to; shelter, protection, predation 

pressure, food resource availability, locomotor abilities, species’ dispersal and 

reproduction abilities. Several studies on these variables have shown the effect they 

have on the animal’s use of space (Saracco et al.  2004), with marked differences 

between species as they experience their habitat at different spatial and temporal scales. 

Previous studies (Posa and Sodhi 2006; Scales and Marsden 2008) have shown that forest 

endemic species are the most extinction prone in these modified tropical landscapes. 

Studies on the effects of clearing old growth, primary forest have identified a set of 

specialist forest species highly vulnerable to land-use change include plants, insects, 

amphibians, reptiles, birds, bats and primates (Barlow et al. 2007; Faria et al. 2007; 

Basset et al. 2008).  

Discovering which endemic forest species can maintain viable populations in 

these human modified landscapes continues to pose a challenge to conservationists 

(Chazdon et al. 2009). Obligate forest species that are only found in large remnants of 

native forests (including several arboreal primate species) are intrinsically more 

vulnerable to extinction from forest loss than species only partly dependent on forest 

habitat, and their functional roles such as seed dispersal are not easily replaced (Gardner 

et al. 2009). Studies on an animal’s use of space in regards to food resources and shelter 

are numerous, although research into the effect of canopy and vegetation structure on 

animal movement, independent of these variables has received relatively little attention. 



The general consensus is that the structural complexity of the forest vegetation plays a 

significant role in species occurrence and movement (Arroyo-Rodríguez and Fahrig 

2014), and can provide a crude proxy of biodiversity value across land use intensification 

gradients (Gardner et al. 2009). Usually, forest biodiversity declines along a gradient of 

old growth primary, secondary, plantations, arable crops and pasture (Philpott et al. 

2008), reflecting the decline in floristic and structural diversity. However, the structural 

recovery of a forest following human modification (i.e. logging) can occur at a much 

faster rate than biotic recovery, therefore structural diversity does not always reflect 

species and functional group composition, which can take many years to increase to its 

original level (Liebsch et al. 2008). Knowledge of historical logging practices within an 

area can be of great importance when considering effects on biodiversity and evaluating 

forest structure, and is crucial when considering forest dependent species (Peres 1993). 

Forest structure has been shown to be related to changes in the composition of bird 

assemblages (Barlow & Peres, 2004a) and important in driving bird species distributions 

(Griesser & Lagerberg, 2012) and functional diversity (Hidasi-Neto et al. 2012). 

Vegetation structure is also an important component of habitat quality for terrestrial 

birds (Hinsley et al. 2008) influencing both nesting and foraging activities, as well as 

affecting the ease of movement for these birds both physically and behaviourally 

(Desrochers and Hannon, 1997).   

 

2.6: Primate relationships, adaptions and vulnerabilities to habitat structural change 

Primates have a complex relationship with their habitats, and understanding this 

relationship is essential for effective conservation planning (Hamard et al. 2010). The 

majority of tropical primate species are arboreal, and as they lack the ability to move 

large distances between forest patches, changes in forest structure may have a more 

adverse impact on their survival. Recently, forest structure has been highlighted as an 

important factor in driving primate species abundance. Gouveia et al. (2014) showed 

that vertical forest structure is a strong predictor of primate species richness due to the 

increasing availability of arboreal microclimates in taller, more stratified tropical forests. 

Palminteri et al. (2012) showed the importance of forest structural diversity in the bald 

faced saki Pithecia irrorata, which are more frequently present in uniform forest with a 

taller inter-connected canopy and absent from low, highly fragmented patches. 

Engstrom (2000) showed that Bornean orangutan Pongo pygmaeus densities were 

reduced in disturbed forests with high gap frequencies, which may be a result of an 



increase in energy demands experienced in order to reach more dispersed food 

resources. Thus, a reduction in forest cover can potentially reduce the range and 

distribution of forest dwelling primates. The arboreal nature of neotropical primates 

decreases their ability to cross non-forest areas (Chiarello and de Melo 2001), though 

anecdotal evidence exists that some arboreal primates will disperse across plantations 

(Umapathy and Kumar 2000). These behaviours are still fairly uncommon reflecting the 

higher energy expenditure involved and the increased exposure to predation this form 

of travel conveys. Anderson et al. (2007) documented colobus monkeys Colobus 

angolensis palliates, traveling through a diverse range of modified habitats, though 

height and coverage of vegetation (>6m tall and coverage of 50-79%) predicted relative 

use with a preference for taller, more connected areas. Variance in density of the Tana 

river red colobus Piliocolobus ruformitatus, was explained by high basal area of food 

trees, density of food trees and basal area per tree for all trees (Mbora and Meikle 2004), 

so factors influencing the occurrence and abundance of certain tree species is also an 

important consideration in species presence.  

Two main predictors of primate species vulnerability to habitat encroachment 

and destruction have been highlighted: 1. proportion of fruit in the species’ diet, and 2. 

home range size. Primates with large home ranges who are primarily fruit eaters are 

thought to be the most vulnerable to the negative effects of forest degradation and 

fragmentation. These include; bearded saki monkeys Chiropotes satanas chiropotes, and 

southern gentle lemurs Hapalemur meridionalis (Boyle and Smith 2010; Schwitzer et al. 

2011; Eppley et al. 2011). Factors that enable species to persist in fragmented or 

disturbed habitats include a small home range, a broad ranged diet and small group size 

(Purvis et al. 2000). Species include; howler monkeys Alouatta spp, mantled howler 

monkeys Alouatta palliate and white-faced capuchins Cebus capucinus (Bicca-Marques 

2003; Estrada 1999; Panger et al. 2002). Spider monkeys Ateles spp with a highly 

frugivorous diet and large home range size are not commonly found in forest fragments 

(Boyle et al. 2010), whereas the increased ability of howler monkeys to live in such 

fragments has been attributed to flexibility and adaptability in their feeding strategies 

(Bicca-Marques 2003). Yet, this species was still found to be negatively affected by forest 

fragmentation (Arroyo-Rodríguez and Dias 2009). Brown capuchin monkeys Cebus paella 

and titi monkeys Callicebus moloch are capable of living in extensive areas of disturbed 

primary and secondary growth forest owing to having a wide dietary breadth, adapting 

highly conservative energy budgets and increasing the amount of foliage in their diet 



relative to fruit pulp (Michalski & Peres 2005b). Although, caution should be applied 

when assessing species’ presence in forest fragments, as this may not indicate lower 

sensitivity to fragmentation. Bearded sakis Chiropotes Satanu in Brazil showed flexibility 

in their behaviour in secondary forest; but lack of infants and juveniles suggested these 

animals did not have adequate resources to successfully breed (Boyle and Smith 2010), 

thus affecting long term species stability. The ‘quality’ of the forest area; size, shape, 

amount of disturbance, canopy height and food availability are also important factors to 

consider. These factors can impact on the sustainability of larger populations and 

multiple species of primates (Mbora and Meikle 2004). 

 

2.7: Hylobatids 

Asia has more critically endangered primate species than any other region 

(O’Brien et al. 2003) constituting ~7-20% of the total primate density and ~10-25% of 

primate biomass within these communities. The majority of Asian primate communities 

are distributed across the east and west of the region, though species are found across 

Japan, China and the Philippines (Reed and Bidner 2004). Asia harbours relatively few 

large bodied primates, and the majority fall into the 5-10kg range (Reed and Bidner 2004) 

and most are frugivores. Frugivorous, larger primate species need a larger home range 

to satisfy their ecological requirements, and reviews by Johns and Skorupa (1987) found 

that these species are the most sensitive to forest disturbance and show a lower survival 

ability in light of disturbance and forest loss. Primate species within this category include 

the Hylobatidae: gibbons and siamangs. These are small arboreal apes inhabiting 

rainforests of south-east Asia, north-west India and Bangladash (Chivers 1984). Within 

Asian rainforests, there are only one or two gibbon species co-existing with other 

primates including similar sized leaf monkeys, macaques and on Sumatra and Borneo, 

the much larger orangutan (O’Brien et al. 2003).  

Within the family hylobatidae, there are four genera of gibbons: Bunopithecus 

(hoolock gibbon), Hylobates, Nomascus (crested gibbons) and Symphalangus (siamangs), 

containing 16 species in total. Gibbons live in small family groups and are mostly socially 

monogamous, with males and females forming stable, long-term pairs (Mitani, 1990). 

Gibbons are highly territorial and pairs use a ‘duet’ which consists of a sequence of calls 

(Cheyne et al. 2007) usually performed in the morning. These calls not only defend their 

territory but also strengthen their pair bond. These ‘duets’ are useful as they can be used 

for population estimates through auditory sampling (Brockelman and Ali 1987).  



The majority of gibbons are allopatric, apart from the sympatric lar gibbon and 

siamang in Sumatra (Cheyne 2010). To allow co-existence within this arboreal 

environment, each species distributes their daily activities (feeding and travelling) 

between different canopy layers within different time periods. Where these two species 

co-exist in a certain area, their highly territorial morning callings are also undertaken at 

different times, preventing overlap of calling activity. These differences in resource and 

substrate use, time allocation of ecological behaviours and modes of locomotion reduce 

resource competition and promote niche separation between them (Raemaekers et al. 

1980; Cannon and Leighton 1994; Reed and Bidner 2004). Hylobatids are generally found 

at low population densities, have long generation times, a delayed onset to sexual 

maturity and long inter-birth intervals (Yanuar 2009). This suggests reduced abilities to 

respond demographically to habitat disturbances (O’Brien and Kinnaird 2011; Lee et al. 

2014) and longer recovery rates following escalated habitat losses and degradation. In 

areas showing severe habitat disturbance and forest loss, hylobatids will be faced with 

locomotor challenges caused by large canopy gaps and reduced size of branch supports. 

This may result in increased energy expenditure from travelling longer distances and on 

different pathways from their preferred routes, and changes in their travel mechanisms 

as they are physiologically limited to the distances they can cross through brachiation 

(Cheyne 2011; Cheyne et al. 2013). A gibbon’s range of locomotory behaviours include 

climbing, leaping, brachiation and bipedal walking (Cant 1992). Leaping and brachiation 

are the most commonly used, preferred modes of transport through the canopy (Cheyne 

et al. 2012). Leaping is defined as discontinuous progression where the hind limbs 

provide all the propulsion, and brachiation (arm swinging), defined as discontinuous 

progression in which the forearms are used in a suspended posture (Cant 1992). These 

two forms of locomotion require a more uniform canopy, and an uneven canopy or one 

with large canopy gaps poses a crucial problem for these primates. Gibbons select 

established travel routes known as arboreal highways (Chivers 1974) which minimise 

their chance of encountering gaps. Gibbons may have the ability to tolerate some forest 

disturbance from selective logging by adapting locomotor behaviour, however, there 

may be a limit as to how much they can adapt to. Cheyne et al (2012) found gibbons 

reduce brachiation and increase other modes of travel in areas of selective logging, 

though no gap crossing over areas >12m was observed, potentially being a constraint on 

the gibbon’s physical abilities. In addition, Nijman (2001) found that gibbons in disturbed 

habitats shifted activities from the upper to the middle canopy and increased time spent 



resting. This negatively impacted on other vital behaviours, with individuals showing 

decreased time spend singing, feeding and travelling. Cheyne et al (2012) also found an 

increased time spent in ‘broken canopy’, therefore suggesting disturbance has a 

significant effect on behaviour. Furthermore, Nijman (2001) recorded a lower fecundity 

and higher mortality of individuals in disturbed forest. Likewise, O’Brien et al. (2003) 

found that siamangs in recently burned habitats had reduced reproductive success 

compared to individuals in non-degraded habitats.  

 

2.7.1: Hylobatids and sleeping trees 

As primates spend a significant proportion of their lives in sleeping trees, 

selection of a suitable tree for this purpose is crucial for survival and individual fitness 

(Cheyne et al. 2012). Features such as height, diameter (reflecting stability) and safety 

influence tree choice (Lutermann et al., 2010; Phoonjampa et al., 2010). Cheyne et al 

(2012) found gibbons most frequently slept in Dipterocarpaceae trees, which were taller 

than the average tree height in the area. Tall, emergent trees are additionally used for 

singing at dawn (Anderson et al. 2007). Therefore, presence of a sufficient number of tall 

trees may be required for gibbons to thrive in an area. Furthermore, Phoonjampa et al 

(2010) found predator avoidance, proximity of feeding trees and neighbouring groups 

played a major role in the choice of sleeping sites by pileated gibbons Hylobatides 

pileatus. 

 

2.7.2: Hylobatids and feeding 

Evidently, availability of vital food resources is an important consideration within 

a primate’s habitat, and a limiting variable of occupation (Marshall and Leighton 2006; 

Marshall et al. 2009). However, a study by Paciulli (2010) showed that Kloss gibbon, 

Hylobates klossii, densities did not change according to the availability of favoured food 

resources such as figs, suggesting absence of favoured food items does not always limit 

densities. This species demonstrates the ability to switch diets to less desirable, less 

nutritious food items during periods of food scarcity (Paciulli 2010); natural occurrences 

within rainforest habitats. Sumatran forests display pronounced seasonal variations of 

rainfall and mast fruiting events, causing temporal variation in food availability which 

may be dramatic and unpredictable (Kinnaird and O’Brien 2005). Therefore, it is thought 

natural selection should favour behavioural plasticity in primates living in these 

unpredictable, complex landscapes, and gibbons are known to show this level of 



flexibility in their diets (Bartlett 2007). For example, lar gibbons and siamangs may switch 

to a more folivorous diet when fruit resources are less abundant (O’Brien et al. 2003), 

however, they may not be able to endure this for very long due to physiological 

adaptations not allowing effective digestion of tanins found in leaves, limiting their 

ecological plasticity.  

 

2.7.3: Hylobatids and vegetation structure 

Recent studies (Muzaffar et al. 2007; Cheyne 2010; Hamard et al. 2010; Paciulli 

2010; Phoonjampa et al. 2011; Akers et al. 2013) have begun to examine relationships 

between hylobatid density and forest vegetation characteristics. As of yet, these studies 

have provided little insight into the exact important structural variables and habitat 

characteristics needed to support hylobatid populations. Gibbons prefer higher canopies 

(Whitten 1982) and Hamard et al. (2010) found gibbon density in Kalimantan was highly 

correlated to canopy cover and tree height, alongside density of large trees and the 

availability of food trees within an area. Pileated gibbons in Thailand depend on 

undisturbed forests but can persist in degraded areas (Phoonjampa et al. 2011), and the 

density of Bornean white‐bearded gibbon Hylobatides albibarbis in Kalimantan is 

positively associated with vegetation parameters indicative of tall, relatively undisturbed 

forest with good canopy cover (Hamard et al. 2010). Furthermore, yellow cheeked 

crested gibbons Nomascus gabriellae in Cambodia also appear to be associated with 

undisturbed forest with a high canopy (Traeholt et al. 2006), but could persist in 

selectively logged forests. Reproduction and survivorship in siamangs is linked to the 

availability of strangler figs which can be used as a proxy for habitat quality (O’Brien et 

al., 2003). Lee et al (2014) found gibbon density and group size in Sumatra increased with 

forest quality, though gibbons were still present within degraded areas of forest.  

 

2.8: Conclusion 

Today, few truly undisturbed tropical forests exist, whereas degraded, logged, 

secondary and plantation forests are rapidly expanding (Gibson et al. 2011). Species that 

are found within primary forests are highly specialised taxa that have evolved a broad 

continuum of habitat requirements and life history strategies over millennia (Chazdon et 

al. 2009). To identify the ability of species to survive in modified, disturbed, fragmented 

and secondary growth habitats it is important to accurately assess the abundance and 

distribution of these highly specialised forest taxa in undisturbed, old growth forests, 



alongside a detailed understanding of their individual habitat requirements and dispersal 

limitations. The survival of these primate species is dependent on the protection of these 

habitats (Chapman et al. 2006), and understanding the links between primate abundance 

and specific habitat attributes (such as vegetation structure), that are key in determining 

population distribution and abundance, will greatly aid in the effective conservation of 

resident populations (Hamard et al. 2010). This knowledge can be used to assess the 

necessary requirements that species need to successfully survive, and to focus harvest 

strategies to avoid removing certain tree species most important to primate species. 

Species with large home range sizes and with a high degree of frugivory, such as 

hylobatids, are the ideal model for investigating the impact of these vegetation changes. 

The following chapters discuss a field study into how forest structure differences, such 

as those created by disturbance, affect hylobatid densities in a lowland forest in 

Indonesia. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3: Methods 

3.1: Study Species 

 Gibbons are small-bodied apes, classified under the superfamily Homonoidea 

and part of the Hylobatidae family (Bartlett 2007), all which are found in Asia. There are 

four recognised genera of gibbons, and 16 recognised species (Bartlett 2007; Cheyne 

2010). All species of gibbons are considered threatened with extinction, with four 

critically endangered, 11 endangered and one listed as vulnerable. This is largely due to 

habitat loss and habitat degradation (Geissmann 2014). Hylobatids are therefore the 

ideal model for understanding how primates react to different levels of habitat 

degradation and recovery (Phoonjampa et al. 2011). Although the majority of gibbon 

species are allopatric, the lar gibbon Hylobates lar exists sympatrically with the siamang 

Symphalangus syndactylus in a few parts of its range, one of these being the lowland 

forests of North Sumatra.  

Lar gibbons are the most widespread of the gibbon species, with the broadest north to 

south distribution (Bartlett, 2007). Lar gibbons are small lesser apes, with adults 

weighing between 5-6kg and varying in colour from black to blonde. Their main defining 

characteristic is the white colouration on their hands and feet, giving them their other 

recognised name of the white handed gibbon (Geissmann 2014). 

Siamangs, in contrast, have only two recognised sub species (Symphalangus syndactylus 

and Symphalangus continentis) and are less widely distributed, being restricted to 

Sumatra, Malay Peninsula and Thailand (Gron 2008). Siamangs are the largest living 

extant hylobatid species, with adults weighing between 10-12kg. Both sexes are black in 

colouration and have large air sacs on their throat which inflate when singing and act as 

sound resonators (Gittins and Raemaekers 1980).  

 

 

 

 

 



 

 

 

 

Figure 3.1. Left: Lar gibbon Hylobates lar vocalising, and on the right a Siamang Symphalangus 
syndactylus with an infant in Sikundur. Photo credit by A.H Korstjens and E.L. Hankinson 

 

3.1.1: Ecology 

Both the siamang and lar gibbon live sympatrically in Sumatran lowland 

dipterocarp forests, but are also known to inhabit hill and peat-swamp forests (Gron 

2010). Lar gibbons prefer these lowland forest habitats and do not typically venture 

above 1200m elevation, whereas the siamang in has been known to inhabit higher 

elevations. Both species exploit similar feeding niches and use similar locomotive 

strategies; both sing and sleep in the highest emergent trees whilst using the middle and 

lower upper canopies to feed and travel (Gittins and Raemaekers 1980). Home range 

sizes vary between the species (Table 3.1), undoubtedly due to differences in diets. 

Siamangs are more folivorous whilst the lar gibbon utilises more widely dispersed food 

resources and are more frugivorous (Bartlett 2007). Due to these dietary differences, the 

lar gibbon travels more each day; ~1.4km with siamangs travelling <1km daily (Gittins 

and Raemaekers 1980; Table 3.1). Consequently, travel makes up a higher proportion of 

the lar gibbon’s daily activity budget, whereas siamangs spend relatively more time 

feeding (MacKinnon and MacKinnon 1980). Within the species’ home range, these 

gibbons fiercely defend a territory from neighbouring groups. Territory size between the 



species relates to home range size, with the siamang defending a smaller territory, as 

shown in Table 3.1.   

 

Table 3.1. Home range sizes, territory sizes and travel distance of the lar gibbon and siamang (Gittins 

and Raemaekers 1980) 
 

Species Daily travel (km) Home Range Size (Ha) Territory Size (Ha) 

Hylobates lar 1.4 40 29 
Symphalangus syndactylus 0.8 26 18 

 

3.1.2: Diet 

Fruit constitutes the majority of food items for both species of hylobatidae, 

though siamangs are more folivorous than lar gibbons and eat less fruit; 61% and 71% 

respectively (Bartlett 2007). Gron (2010) showed figs featured largely in the diets of both 

species, whilst Geissmann (2014) observed that figs made up ~50% of food for both the 

lar gibbon and siamang in Ketambe. While fruit is clearly a significantly important food 

for both species, they complement their diet with other items such as insects, flowers 

and young leaves (Bartlett 2007; Cheyne 2010). Fruit species from the families 

Annonaceae and Moraceae are also recorded as important food sources for lar gibbons 

(Cheyne 2010), which may also be the case for siamangs. 

 

3.1.3: Locomotion 

Lesser apes exhibit a unique set of morphological adaptations which is associated 

with their form of locomotion. Four different forms of locomotion have been recorded 

for the species; climbing, leaping, bipedal walking and brachiation. Cheyne (2013) found 

that brachiation was the most common form of locomotion (66%) followed by leaping 

(34%). Leaping seems to be used for travelling shorter distances and used to cross small 

canopy gaps, whilst brachiation is employed on longer travel routes. Morphological 

adaptions for this form of locomotion include elongated forelimbs, ridged ribcages, 

highly mobile wrist, shoulder and elbow joints, and an inflexible lower spine (Cheyne 

2011). Hylobatid hands and feet are slender with their four fingers used as hooks to grasp 

tree branches, and thumbs folded down to ensure successful movement (Cheyne 2011). 

Brachiation (Figure 3.2) is thought to be the preferred choice of locomotion as it is energy 

efficient, reduces travel time, predation risk (by remaining in the canopy) and allows 

rapid travel across continuous canopies (Cheyne, 2011). Additionally, this specialised 

locomotive repertoire allows these lesser apes to access fruit and leaves on the thin 



outer branches of trees, unavailable for most competitors (Greissmann 2014) creating 

an exclusive ecological niche for this family of primates. 

 

 

Figure 3.2. Lar gibbon (Hylobates lar) (after a photo series in Eimerl & DeVore, 614 1969, pp. 72-73). 

(Geissmann 2014) 

 

3.1.4: Vocalisations 

One of the most recognisable and important behaviours of hylobatids is the 

production of their highly-specialised vocalisations or ‘duets’. These are produced by 

each monogamous pair (a single male and female) and are typically given in the 

mornings. Single males or females are also known to sing. Call times can differ between 

habitat, species and presence of others. Geissman (2014) found in Malaysia, where 

siamangs and lar gibbons occurred sympatrically, the siamang duets were heard ~2 hours 

after that of the lar gibbon groups. This possibly occurs to prevent inter-specific 

competition. The purpose of these morning duets serves as a dual function; territory 

defence and strengthening pair bonds (Bartlett 2007). The songs are loud, can last for 

half an hour or more and can be heard as far as 1km away (Cheyne 2010), providing an 

extremely useful tool for auditory sampling of the visually cryptic hylobatid family.  

 

3.2: Study Site 

3.2.1: Location, temperature, rainfall and phenology 

 Gunung Leuser National Park (Figure 3.3) forms part of the Tropical Rainforest 

Heritage of Sumatra UNESCO World Heritage Site (YOSL-OIC 2009) and is approximately 

1,094,692ha in size. The park is encompassed by the larger Leuser Ecosystem and 

measuring 2.6MHa, is one of the largest expanses of tropical rainforest remaining in 

south-east Asia. Containing a range of unique habitats and a huge diversity of flora and 

fauna it is not surprising this area is of enormous importance for the world’s climate, and 

one of the last strongholds for many endemic, critically endangered species including the 

Sumatran tiger Panthera tigris sumatrae, the Sumatran rhinoceros Dicerorhinus 



sumatrensis, and the Sumatran elephant Elephas maximus sumatranus. Nonetheless, 

despite being protected by law from any form of destructive encroachment, illegal 

logging and clearing is still occurring, with primary forest disappearing at a rate of 21,000 

hectares per year (Laurance et al. 2012). 

The study site is situated on the eastern edge of the park, located in the Langkat district 

of North Sumatra (04ᵒ58’- 04ᵒ59’ N and 98ᵒ04’- 98ᵒ05’ E). This area was first established 

as the Sikundur Reserve in 1938, prior to the formation of the government body ‘Taman 

Nasional Gunung Leuser’ (TNGL) in 1980 when it received full national park protection 

(Nowak, 2015). The ‘Sikundur area’ (Figure 3.3) now encompasses a monitoring post 

established and maintained by the Sumatran Orangutan Conservation Programme 

(SOCP) due to the importance of this rare habitat and the high suitability of the forest for 

many Asian primates, specifically the critically endangered Sumatran orangutan Pongo 

abelii. SOCP are collaborators of this project, and have been the leading source of 

information on behavioural, ecological and distribution data on Sumatran orangutans in 

the area since 2012, and full-time staff are present at the post all year round.  



 

Figure 3.3. Gunung Leuser National Park, the larger Leuser Ecosystem and the location of the 

Sikundur monitoring post (Nowak 2015). 

 

 Sikundur is located approximately 30-500m above sea level, and has been 

described as ‘a mixture of lowland dipterocarp forest with rich alluvial forests along 

rivers’ (Knop et al. 2004). The climate is superhumid, receiving 2000-3000mm/yr of 

rainfall (Laumonier, 1997). Sikundur’s annual rainfall during 2014 was recorded at 

3,042.8mm (Nowak 2015). The average monthly rainfall is recorded as 256.4mm 

(measured between August 2013-February 2015) with a range of 12.4 – 535.4mm (Figure 

3.4). Highest levels of rainfall generally occur between April-May, September-October, 

and December (Nowak 2015). Low levels of rain are observed during the months January-



March, June-July and November. Average monthly temperatures recorded were 27.3ᵒC, 

ranging from 26.1-29.2⁰C, with the highest recorded between February-July, and lowest 

between October-January (Figure 3.4).  

 

 

 

Figure 3.4. The average rainfall and temperature for the Sikundur Monitoring Post from August 

2013 – February 2015 (SOCP 2014).  

 

Phenology and fruiting within the Sikundur area shows the average percentage 

of trees and lianas bearing fruit between June 2013-February 2015 being 3.6% (Nowak 

2015). High fruiting months were recorded during May and July-September, whereas low 

fruiting between December and April (Figure 3.5). The average fruiting score of 3.6% is 

of interest as this is similar to scores recorded for Bornean field sites (3.0-6.8%) rather 

than Sumatran areas (6.9%-30.57%) including Ketambe and Suaq Balimbing (Wich et al. 

2011). This suggests that this is a low productivity area of Sumatra, and that Sumatra is 

far less homogeneous than previously thought.  



 

 

Figure 3.5. The average rainfall and percent fruit productivity for the Sikundur Monitoring Post 

from June 2013 – February 2015 (SOCP 2014). 

 

 

3.2.2: History of Disturbance 

 Sikundur was subjected to both large-scale and small-scale logging commencing 

in the late 1960s, peaking in intensity between 1976-1988, and again intermittently in 

the 1990s (Nowak 2015). Currently, even with full protection, illegal logging within the 

area as well as complete land clearing is still occurring, in addition to other illegal 

activities such as resin extraction, bird trapping and fishing (SOCP 2014).  

Due to these illegal activities, SOCP undertook an analysis of forest disturbance/loss 

throughout the Langkat district between 2013-2014 using monthly FORMA forest loss 

data downloaded from the Global Forest Watch website (www.globalforestwatch.org; 

Hammer et al. 2013; Hansen et al. 2013). Results of the analysis showed 409 forest 

disturbance hotspots; with 94 of these within 10km of the Sikundur monitoring post 

(SOCP 2014) shown below in figure 3.6.  
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Figure 3.6. Forest loss in the Langkat District. The spatial data was collected from the 

 Global Forest Watch website (www.globalforestwatch.org; Hammer et al. 2013; 

Hansen et al. 2013). The black circle shows the Sikundur monitoring post location and the study 

area. 

 

This study area was chosen for several reasons: 1. Sikundur is one of the few 

remaining places that the lar gibbon and siamang live sympatrically; 2. Density and 

abundance of the species within this location are unknown; 3. Vegetation composition 

and structure varies hugely across the area due to differences in habitat type and 

disturbance levels (historical logging together with current anthropogenic activities) 

providing a structural gradient to evaluate these effects on hylobatid abundance; 4. 



Future proposed studies across the area using unmanned aerial vehicles (UAV’s) will 

require ground truthing of forest areas which this study will provide, supplying an 

invaluable data set aiding future habitat assessments, primate research and disturbance 

levels.  

 

3.2.3: Habitat characteristics 

Sumatran rainforest habitats vary dramatically, and a recent study by Laumonier 

et al. (2010) has demonstrated the ability of the forest’s floral diversity to differ 

significantly in locations only a few kilometres apart. Furthermore, the plant 

communities and species compositions in North Sumatra differ distinctly from the rest 

of the island (deWilde and Duyfjes 1996). The heterogeneity found within this region can 

be illustrated when compared to the Ketambe area. Ketambe’s tall lowland forest varies 

in both structure and composition from the dry lowland forests of Sikundur. Therefore, 

providing initial population densities for this structurally different habitat within the 

same national park will provide insights into Sumatran hylobatid adaptions to this dry 

lowland forest habitat.  

The study area was divided into ten forest areas located to the south and south-

west of the Sikundur research station (Figure 3.3). The forest is predominantly lowland 

dipterocarp, with elevations ranging from the flat alluvial plains adjacent to rivers, to the 

hill areas extending to an altitude of ~500m (Laumonier 1997). As well as natural 

structural and compositional differences between locations, levels of anthropogenic 

disturbance varied between locations, with almost no area surveyed being completely 

undisturbed. The study area consisted of four topographical forest types: 

 

1. Alluvial forest contains flat, non-inundated areas with tree heights ranging 

from 20-25m and emergent trees reaching 50m. Dipterocarps are the dominant tree 

species, but others include Anacardiaceae, Moraceae, Euphorbiaceae and palms. Alluvial 

forest is located in close proximity to rivers, extending 2-5km inland from the river and 

flooding periodically. This habitat is within ~2km of the Besitang River. 

 

2. Plains forest occurs on flat elevated area away from rivers, and is not subjected 

to flooding. It is characterised by 2-8% slopes ranging 5-30m in length. Large trees are 

present, ranging from 35-40m in height, with dense undergrowth, although herbaceous 

vegetation is sparse.  



 

3. Hill forest shows steep inclinations and summits of 450-500m, with slopes 

ranging from 8-30%. These areas consist of a high tree species diversity and a dense, well 

connected canopy. Tree heights are between 35-40m, with emergent trees averaging 

50m in height.   

 

4. ‘Hill-swamp’ forest is hill forest habitat within high areas, showing the same 

characteristics as described above (summits of 450-500m). However, these hill areas are 

intersected with various areas and valleys consisting of ‘swamp habitat’: wet areas 

comprising of a high density of small diameter trees with extensive root systems, and a 

dense undergrowth of rattans and climbers.  

 

Disturbance within these habitats varies historically. Alluvial habitat has been 

frequently disturbed by humans due to its close location to the rivers corresponding to 

the ease of transporting forest goods out. The plains have been logged extensively due 

to ease of access (flat ground, easy to enter forest) from an abundance of road networks, 

and many of these areas have been converted to palm oil and rubber plantations. The 

hills areas were relatively spared from logging until the 1980s due to difficult terrain 

(Laumonier 1997) however, some low hill areas are now completely destroyed and 

occupied by local villages, and therefore have become highly influenced by human 

activities. Despite this, the Siknudur region has become one of the few remaining areas 

of lowland forest that still maintains suitable forest habitat for several species of arboreal 

primates. In addition to the residing gibbon populations, five other primate species 

inhabit the region: long tailed macaque Macaca fascicularis, pig tailed macaque Macaca 

nemestrina, thomas leaf monkey Presbytis thomasi, slow loris Nycticebus coucang and 

the Sumatran orangutan Pongo abelii. 

 

 

 

 

 

 

 

 



3.3: Data collection 

Fieldwork was undertaken from 1st March 2016 to 1st August 2016. Vegetation 

data and hylobatid density surveys were undertaken in ten sample locations (Figure 3.7) 

during the five-month study. The location of the sample areas were chosen to cover the 

largest possible area consisting of a range of forest types and disturbance levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Study area. Coloured circles show habitat types and sample area locations. Bersitang 

village is located north-east of plains forest, and the Bersitang River runs north to south through the 

study area. 
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3.3.1 Forest structural analysis 

To ascertain vertical and structural complexity, randomly placed 25x25m plots 

(minimum of 4 and maximum of 10) were sampled within each forest location around 

the listening posts and conducted within the same time frame as the primate auditory 

sampling, representing a sample of the habitat (Table 4.1). Ten plots were undertaken in 

the plains habitat due to extra surveys being conducted within this habitat not relating 

to this study. However, data from all ten plots was used within this study as it provided 

a more sufficient representation of the forest habitat. Within each plot the following 

measurements were recorded for any tree with a diameter at breast height (DBH) ≥ 10cm 

(Table 3.2).  

 

Table 3.2. Vegetation variables measured within each other the vegetation plots undertaken  

Variable Units Methodology 

Diameter at Breast 
Height 

m Diameter of trunk at approximately 1.3m  

Basal Area cm2 
𝐵𝐴 = 𝜋(

𝐷𝐵𝐻

2
) 

Tree height m Distance from base of trunk to top of crown. 
Bole height m Distance from base of trunk to first major bough. 
Height-DBH ratio - Tree height divided by DBH indicating tree age and growth 

patterns. 
Crown area m2 

𝐴 = 𝜋 (
𝑁 − 𝑆 𝑤𝑖𝑑𝑡ℎ

2
) 𝑥 (

𝐸 − 𝑊 𝑤𝑖𝑑𝑡ℎ

2
) 

Crown connectivity % Visual estimate of connectivity of crown in relation to 
neighbouring crowns by the same observer throughout the 
surveys. 
 

Number of branches - Number estimated in five categories; 0-2cm, 2-4cm, 4-10cm, 
10-20cm >20cm. Conducted by the same observer throughout 
the surveys. 

Total number of trees 
per plot 
 

- Number of trees with DBH ≥ 10cm occupying plot 

Tree Density Per 
hectare 

Total number x 16 

 

3.3.2: Group density estimates of hylobatids 

The most common survey methods used to assess distribution and abundance of 

primate species are strip census and line transects (Buckland et al. 2010; Nijman and 

Menken 2005). These methods rely on observer ability to visually detect groups of 

primates both sides of the survey transect. Although highly efficient for density estimates 

on a range of primate species, these methods have been shown to be unreliable for 

unhabituated hylobatid species. Hylobatid preference for high canopy and inconspicuous 



behaviour decreases visible detection, in addition to their unpredictable behaviour on 

detecting humans: fleeing, mob calling and hiding (Brockelman and Srikosamatara 1993 

and Dacier et al. 2011). These factors can lead to an under-estimation of density, and 

line transect surveys conducted in the Sikundur trail system between February and July 

2015 yielded almost no primate sightings (Consiglio 2015). Fixed point count surveys 

‘map’ gibbon species using long calls and are considered preferable and more efficient 

(Lee et al. 2014). Their loud audible morning vocalisations provide efficient mapping of 

triangulated points (Cheyne et al. 2016). Additionally, fixed point counts allow for quick, 

time-efficient surveys and more reliable results, already proving efficient in numerous 

primate studies (Cheyne et al. 2008; Hamard et al. 2010). Consequently, it has become 

common practice amongst hylobatid researchers to use auditory sampling methods to 

estimate gibbon densities which additionally provides comparative hylobatid density 

data across a range of different sites. Preliminary surveys conducted using this method 

yielded more accurate data than line transects at the study site in 2015 (Consiglio 2015).  

 

3.3.2.1: Auditory sampling 

A total of ten sample locations were surveyed over the 5-month period. To 

achieve the most reliable density estimations, a preliminary survey was undertaken to 

train surveyors in recording techniques. The same surveyors were used in all sample 

areas to increase consistency in bearing and distance estimation and to limit bias 

between sample areas. Each sampling area consisted of a 3 by 1 linear array of listening 

posts spaced ~500m apart (Figure 3.7). A linear array design was chosen over the 

traditional equilateral triangle used by most studies as recent studies by Kidney (2013; 

2016) showed linear arrays yielded a lower variance and reduced bias than non-linear 

arrays of the same size. In the present study, listening post positions were adjusted up 

to 100m between forest locations to avoid difficult terrain, impassable vegetation and 

deep valleys, where vocalisations could be missed or direction misinterpreted due to 

summits. It has been argued that this is more important than ensuring the distance 

between each listening post is uniform (Phoonjampa et al. 2011). Furthermore, all array 

locations were situated at the highest point possible to maximise hearing distance and 

avoid ‘missing’ any singing groups. This resulted in some variation in the sampling area 

(range: 3.5km2 – 5.12km2). Observers were placed at each post between the hours of 

4:30h and 10:00h; the optimum time of day for singing. On each survey occasion, 



observers recorded start and end time of song, compass bearing and estimated distance 

to each hylobatid group heard duetting.  

A gibbon duet is comprised of the female’s great call and the male’s answering 

call (Cheyne et al. 2007). All lone male calls were omitted as these did not represent a 

mated pair or family group inhabiting an exclusive home range (Cheyne 2008). Gibbons 

do not call every day, despite favourable weather conditions, and calling frequencies are 

density dependent; groups call less at lower densities (Cheyne et al. 2007). Each sampling 

area was surveyed for four consecutive days as prior studies found calling stabilised after 

four days (O’Brien et al. 2004; Lee et al. 2014). Rainy mornings were excluded as rain has 

been found to negatively influence singing behaviour (Brockelman & Srikosamatara 

1993; Cheyne 2008; Lee et al. 2014; Cheyne et al. 2016). Nine of the ten sites were 

surveyed for four days, and only one site surveyed for three days due to weather 

conditions. 

 

3.3.2.2: Group mapping 

To ascertain the location of primate groups through triangulation, groups were 

identified at the intersection of compass bearings, which originated from different 

listening posts and had a matching time stamp (Phoonjampa et al. 2011). Following each 

survey day, a map was created based on all groups heard from each listening post (Figure 

3.8). However, estimating distance is difficult in rainforest habitats and even a small 

bearing error can prevent the intersection of lines from two points recording the same 

group. Therefore, groups were distinguished not only through bearing and distance, but 

time and length of each singing bout. This allowed correct identification of groups heard 

over the four-day period and ensures any groups singing twice in one day were not 

recorded as a separate group. Previous research has suggested 500m is the approximate 

width of any given gibbon territory (O’Brien et al. 2004; Buckley et al. 2006; Phoonjampa 

et al. 2011; Cheyne et al. 2014). Consequently, any groups calling more than 500m away 

were considered to be separate groups. Any groups heard ≥500m away was considered 

to represent separate groups if heard simultaneously. Additionally, any groups heard 

from only one listening point but which were located >500m from any other identified 

group on the same day were included in the analysis (Rawson 2010).  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Example of array mapping in QGIS. Different coloured dots signify separate gibbon groups 

and different coloured lines signify separate survey days. 

3.3.2.3: Effective listening area (E) 

The effective listening area (E) is the maximum area that gibbon vocalisations can 

be heard from a listening post. As a general rule of thumb, gibbon calls can usually be 

heard at a maximum distance of 1.5km (Rawson 2011), though this can vary greatly due 

to habitat terrain. Specific maximum hearing distance for each individual location can be 

estimated using field data from each survey undertaken. However, this was not possible 

due to time limitations. Hence a fixed radius of 1km was defined around each listening 

post, omitting overlapping areas to avoid incorrect estimation of the sampling area 

(Figure 3.8). This 1km ‘effective listening area’ is used by established gibbon researchers 

(Cheyne et al. 2016; Hamard et al. 2010) therefore is assumed to be reliable. Areas 

without forest cover (i.e farmland) were removed from the effective listening area. All 

listening areas were calculated using the program QGIS (v.2.16.3).  

 



3.4: Data Analysis 

 Two density estimation methods were used to assess hylobatid density. 1. 

Triangulation; a standard method known throughout the research community and used 

in a large range of countries developed by Brockelman and Ali (1987), and 2. gibbonSECR, 

a Spatial Explicit Capture mark-Recapture method in R Studio, developed by Kidney et al. 

(2013). The total survey area was 46.65km2 across four different forest types over a total 

of 39 days. 

 

3.4.1: Standard Triangulation 

Density estimates were obtained using the following formula developed by 

Brockelman and Ali (1987):  

                                                 D = n/[p(m) X E]                                                 (1) 

where n = number of groups heard in an area determined from mapping, p(m) = 

estimated proportion of groups expected to sing during a sample period of m days, and 

E = effective listening area.   

The correction factor p(m) was determined at each survey area using the following 

formula;  

                                 P(m) = 1-[1-p(1)]m                                                   (2) 

Where P(1) = singing probability for any given day and m = number of survey days. This 

was calculated in Excel (Microsoft office professional 2013), using the package for 

calculating gibbon population density from auditory surveys developed by Rawson 

(2011).  

 

3.4.2: SECR 

The second method used to estimate gibbon density was calculated using 

Spatially Explicit Capture mark-Recapture models (SECR) using the software package 

‘gibbonsSECR’ with the programme R studio (version 3.1.1) and developed by Kidney et 

al. (2013). Prior to analysis, calling probabilities were calculated for each survey area 

using the formula above in triangulation. Once number of groups had been determined 

through mapping, each separate group was assigned an occasion number and input into 

the model. The buffer radius (m) was selected based on the Akaike Information Criterion 

(AIC). A half normal detection function was applied to the analysis as this assumes the 



probability of detection has a half normal distribution (commencing at 1, and 

exponentially decreasing as distance from the listening post increases). 

 

3.5: Statistical Analysis  

3.5.1: Forest structural analysis 

All continuous vegetation variables were tested for normality through both 

Shapiro-Wilkinson and Kolmogorov-Smirnov tests. As all variables were non-normally 

distributed a log10 transformation was performed in an attempt to achieve normality. 

Following transformation, vegetation variables were still non-normal and therefore to 

compare structural differences between the four land units, nonparametric Kruskal-

Walis tests were performed, followed by pairwise Mann-Whitney U post-hoc tests 

(Fowler et al. 1998). Critical values for post hoc tests were obtained through sequential 

Bonferroni correction. Following the above tests, non-parametric Spearman’s rho 

correlations were performed on all vegetation variables to identify any collinearity 

between the variables.  

 

3.5.2: Hylobatid Density Analysis 

Parametric tests were used to compare hylobatid density estimates between all 

ten survey locations, to test for differences in densities between species and to test for 

differences between densities for both density estimation methods using independent 

sample T-tests. A Spearman’s rho correlation and a least squares linear regression was 

performed to evaluate any relationships between the densities of the two species.  

 

3.5.3: Relationships between hylobatid densities and forest structure 

Pearson’s rho correlations were undertaken on all structural variables. To 

ascertain the strength of the relationship, r values were categorised into; moderate 

relationship (r = 0 – 3), strong relationship (r = 4 - 6) highly strong relationship (r = ≥ 7).   

Following Pearson’s rho correlations, a multiple regression analysis was 

undertaken to identify relationships between hylobatid density and forest structure. Any 

variables which were significantly correlated with other vegetation variables were 

omitted from the regression as this can cause the model to over-parameterize. These 

included: DBH, basal area, height-DBH ratio, and total number of trees per plot. 

Additionally, branch counts were not included in the analysis, as many categories were 



highly correlated to DBH or with other variables (i.e tree number and tree density) 

ultimately producing the same relationships twice.  Furthermore, branch counts were 

not regarded to be highly influential variables relating to hylobatid densities. Tree height 

and canopy connectivity are important forest structural variables previously correlated 

to gibbon density (Hamard et al, 2010; Lee et al. 2014). Therefore, to establish if there 

are stronger relationships between hylobatid densities and if a tolerance level of tree 

height and canopy connectivity can be identified for both species, these variables were 

further categorised into the following: Tree heights less than 20m (<20m), tree heights 

between 20-30m (<20m >30m and tree heights above 30m (>30m). Connectivity was 

classified into the following categories: Connectivity less than 15% (<15%), connectivity 

less than 25% (<25%), connectivity between 25-50% (>25% <50%), connectivity between 

50-75% (>50% <75%) and connectivity over 75% (>75%). All tests were carried out using 

SPSS v.23, and a significance level of P<0.05 was applied. Following categorisation, 

backwards stepwise multiple regression analysis was undertaken on the height 

categories and connectivity categories, to ascertain which influenced gibbon density 

most strongly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Results 

4.1: Forest structural analysis 

 Ten forest areas were surveyed for both hylobatid density and forest structure 

giving a total survey area of 46.25km2 over a sampling period of 39 days. Four distinct 

habitat types were recognised, 49 vegetation plots sampled and a total of 1418 individual 

trees measured. A minimum of four vegetation plots were undertaken in each area with 

a maximum of ten in array 1 (Table 4.1).   

 

Table 4.1. Summary showing number of vegetation plots, vocal arrays and individual trees measured 

during the study. 

Array Number Number of days per 
array 

Habitat 
Type 

Number of 
vegetation plots 

Number of trees 
measured per 

array 

1 4 Plains 10 234 
2 4 Hills 6 168 
3 4 Hills 4 104 
4 4 Hills 4 183 
5 3 Alluvial 4 131 
6 4 Alluvial 4 118 
7 4 Hill-swamp 5 149 
8 4 Hills 4 132 
9 4 Hill-swamp 4 106 

10 4 Hill-swamp 4 93 

Total 39 4 49 1418 

 

4.1.1: Normality tests 

None of the continuous vegetation variables showed a normal distribution (even 

after a log10 transformation) based on Shapiro-Wilkinson and Kolmogorov-Smirnov 

normality tests. Therefore, non-parametric tests were used to explore differences in 

forest structural variables between the four identified land units across the ten surveyed 

forest areas.  

 

4.1.2: Structural Differences Between land units 

Kruskal-wallis non-parametric tests showed the land units differed significantly 

from each-other for all continuous vegetation variables (Table 4.2). Therefore, further 

pairwise Mann-Whitney U post hoc tests were performed to compare land unit types 

(using a sequential Bonferroni correction for multiple tests, α’ is set to 0.0083; Table 4.2).  

Tree heights differ significantly between all land units apart from plains and hill-swamp 

(Figure 4.2). The hills habitat contained the tallest trees (median = 18.0m) whilst alluvial 



forest possessed the shortest trees on average (median = 13.0m). Height to first major 

bole shows a similar pattern as the top height of trees with the hill forest containing the 

greatest bole height (median = 12.0m), alluvial the smallest (median = 8.0m), and plains 

and hill-swamp forest with heights in between these extremes (median=9.9m and 10.0m 

respectively; Table 4.1, Figure 4.2). There is a significant difference in stem diameter 

(DBH) of trees between all land units except within the plains and hills forest (Table 4.2; 

Figure 4.3).  Crown areas (m2) of individual trees are comparable between the plains and 

hill-swamp forest, and were significantly larger in the hill forest (median = 84.4m2). The 

smallest crown areas were located in the hill-swamp forest (median = 58.9m2; Figure 

4.4). Tree connectivity significantly differed between all habitat types except plains and 

alluvial forests and hills and hill-swamp forest (Figure 4.5; Table 4.2). The highest 

percentage of canopy connectivity between individual trees was seen in the hill-swamp 

forest (median=30%, Table 4.1)), whilst the lowest connectivity was recorded in the 

alluvial habitat type (median = 20%, Figure 4.5).  

 

 

 

 

 



 

 

 

 

Table 4.2. Kruskal-Wallis non-parametric tests conducted on all continuous vegetation variables. Significant P-values are highlighted in bold. 

 Plains Forest Alluvial Forest Hills Forest Hill-swamp Forest Kruskal- Wallis 

N Median Mean N Median Mean N Median Mean N Median Mean X2 P 

Top Height (m) 234 16.8 18.04 249 13 14.88 455 18 20.07 480 16 17.66 95.59 <0.001 

Height to first bole (m) 234 9.95 11.25 249 8 8.95 455 12 13.67 480 10 11.07 108.43 <0.001 

DBH (cm) 234 21 52.92 249 17.80 22.89 455 21 27.40 480 18.2 23.76 25.63 <0.001 

Crown Area (m2) 234 63.95 84.84 249 62.80 95.10 455 84.40 170.51 480 58.90 82.40 30.83 <0.001 

Connectivity 234 20 25.15 249 20 21.55 455 25 32.84 480 30 31.01 53.74 <0.001 

Branches over 20cm 234 0 0.16 249 0 0.42 455 0 0.26 480 0 0.08 30.16 <0.001 

Branches 10-20cm 234 0 0.76 249 0 1.45 455 0 0.85 480 0 0.36 34.01 <0.001 

Branches 4-10cm 234 3.00 6.52 249 14.00 21.03 455 2.00 5.72 480 1.00 4.89 153.55 <0.001 

Branches 2-4cm 234 27 44.82 249 65.00 97.03 455 20.00 32.39 480 20.00 34.52 194.63 <0.001 

Branches 0-2cm 234 200.00 271.18 249 300.00 455.24 455 100.00 182.71 480 200.00 289.38 155.44 <0.001 

 

 

 

 



 

 

 

Table 4.3. Pair-wise comparison of the land units for all continuous vegetation variables. Significant P-values following sequential Bonferroni correction are highlighted in bold.  

 Plains  vs Hills  Plains vs Alluvial 
 

Plains vs Hill-Swamp 
 

Hills vs Alluvial 
 

Hills vs Hill-Swamp 
 

Alluvial vs Hill-Swamp 
 

U P U P U P U P U P U P 

Top Height (m) 45853.5 
 

 0.003  19489.5 < 0.001 51546 
 

0.074 32656.5 
 

< 0.001  87156.5 
 

< 0.001 45445.5 < 0.001 

Height to first bole (m) 41591 
 

 <0.001  21455  <0.0001 54898.5 
 

0.626 30924 
 

< 0.001  83379 
 

< 0.001 45820.5 
 

< 0.001 

DBH (cm)  51747.5 0.548  23570 < 0.001 46256.5 
 

< 0.001 48028 
 

< 0.001 94906.5 
 

< 0.001 58363.5 
 

0.604 

Crown Area (m2)  44439.5 
 

<0.001  28987 
 

0.924 53981 
 

0.400 47134.5 
 

< 0.001 88053.5 
 

< 0.001 57838 
 

0.476 

Connectivity  41970 
 

< 0.001 26888.5 
 

0.138 48095.5 
 

0.002 39399.5 
 

< 0.001 10232.5 
 

0.093 46184 
 

< 0.001 

Branches over 20cm 53235 
 

1.000 29016 
 

0.332 56160 
 

1.000 56420 
 

0.176 10920 
 

1.000 59056 
 

0.172 

Branches 10-20cm 52994.5 
 

0.509 28672 
 

0.117 55932 
 

0.542  56006 
 

0.201 10915 
 

0.939 59056 
 

0.172 

Branches 4-10cm 52873.5 
 

0.829 18377 
 

< 0.001 54747.5 
 

0.407 35485 
 

< 0.001 10721 
 

0.464 36401 
 

< 0.001 

Branches 2-4cm 42862.5 
 

< 0.001  18284 
 

< 0.001 47160.5 
 

< 0.001 26428.5 
 

< 0.001 10657 
 

0.482 30519 
 

< 0.001 

Branches 0-2cm  33153 
  

< 0.001 25032.5 
 

0.002 50343.5 
 

0.015 29819.5 
 

< 0.001 80433 
 

< 0.001 46343 
 

< 0.001 

 



 

 

Figure 4.1. Top Height of trees in each land unit. Boxes represent quartiles, whiskers indicate 95 

percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 

 

Figure 4.2. Height of first bole of trees in each land unit. Boxes represent quartiles, whiskers indicate 

95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 



 

 

 
Figure 4.3. DBH of trees in each land unit. Boxes represent quartiles, whiskers indicate 95 percentile 

values and * and ᵒ represent the extremes and outliers, respectively. 

 

Figure 4.4. Crown Area of trees in each land unit. Boxes represent quartiles, whiskers indicate 95 

percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 



 

 

 

Figure 4.5. Connectivity of trees in each land unit. Boxes represent quartiles, whiskers indicate 95 

percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 

The number of larger branches over 20cm and between 10-20cm in diameter were not 

significantly different between habitat types. The number of smaller branches (0-2cm 

diameter and 2-4cm) showed more variation between land units (Table 4.2). 

There was a significant difference in the density of trees >10cm DBH (ha) between the 

land units (Kruskal Wallis test: X2
(4)= 10.491, p = 0.015) due to a significant difference 

between the plains and alluvial forest (Table 4.3). The smallest density of trees was found 

in the plains forest (median=360trees/hectare), whilst the hill and alluvial forest 

contained the highest density of trees DBH (median=496, 496trees/hectare, 

respectively).  

 

 

 

 

 



 

 

Table 4.4. Summary of pairwise Mann-Whitney U post hoc tests on tree density between the 

different land units. Significant P-values following sequential Bonferroni correction are highlighted in 

bold and underlined. 

 Plains vs Hills 
N = 28 

Plains vs 
Alluvial 
N = 18 

Plains vs Hill-
Swamp 
N = 23 

Hills vs 
Alluvial 
N =26 

Hills vs Hill-
Swamp 
N = 31 

Alluvial vs 
Swamp 
N = 21 

Tree Density 
(ha) 

U = 36.5 
P = 0.01 

U = 10.5 
P = 0.006 

U = 42.0 
P = 0.152 

U = 67.5 
P = 0.802 

U = 84.0 
P = 0.185 

U = 22.0 
P = 0.02 

 

 

 

Figure 4.6. Density of trees (>10cm DBH) in each land unit. Boxes represent quartiles, whiskers 

indicate 95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 

4.1.3: Correlations between vegetation variables 

All vegetation variables correlated significantly with each other within the entire 

dataset, however many relationships represented weak correlations (Spearman’s Rho 

correlations; Table 4.4). Correlations were ranked on the strength of the relationship, as 

all variables showed significance. Moderate correlations if r = 0 – 3, strong correlations 

if r = 4-6, and very strong correlations if r = ≥ 7. The strongest positive correlation was 

found between tree height and height to first bole (r = 0.790, p<0.001; Table 4.4; Figure 

4.7). Tree diameter was strongly positively correlated with numerous variables (Table 



4.4); including height (r = 0.757, p<0.001; Figure 4.8), height to first major bole (r = 0.591, 

p<0.001; Figure 4.9), and crown area (r=0.606, p<0.001; Figure 4.10). Crown area was 

strongly positively correlated to both top height and height to first bole, as well as tree 

diameter (Table 4.4).  

Canopy connectivity of individual trees showed no strong correlations to any of the other 

tree variables (Table 4.4). Number of branches of all size categories were strongly 

positively correlated to each other (table 4.4) and to tree diameter. Additionally, the two 

largest branch sizes were strongly correlated to crown area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Table 4.5. Summary of Spearman’s Rho Correlations on all continuous vegetation variables showing significance in all variables between the different land units. 
Correlations between variables showing, bold highlighted signify moderate correlations, * signifies strong correlations and **signifies very strong correlations.  

 DBH (cm) 
N = 1418 

Top Height 
(m) 
N = 1418 

Height first 
bole (m) 
N = 1418 

Crown Area 
(m2) 
N = 1418 

Connectivity 
(%) 
N = 1418 

Branch 
>20cm 
N = 1418 

Branch 10-
20cm 
N = 1418 

Branch 4-
10cm 
N = 1418 

Branch 2-
4cm 
N = 1418 

Branch 0-
2cm 
N = 1418 

DBH (cm) 
N = 1418 

_          

Top Height (m) 
N = 1418 

r=0.757** 
P<0.001 

_         

Height first bole 
(m) 
N = 1418 

r=0.591* 
P<0.001 

r=0.790** 
P<0.001 

_        

Crown Area (m2) 
N = 1418 

r=0.606* 
P<0.001 

r=0.583* 
P<0.001 

r=0.440* 
P<0.001 

_       

Connectivity (%) 
N = 1418 

r=-0.100 
P<0.001 

r=--0.079 
P=0.003 

r=--0.089 
P=0.001 

r=-0.073 
P<0.001 

_      

Branch >20cm 
N = 1418 

r=0.462* 
P<0.001 

r=-0.326 
P<0.001 

r=-0.201 
P<0.001 

r=0.427* 
P<0.001 

r=--0.053 
P=0.044 

_     

Branch 10-20cm 
N = 1418 

r=0.542* 
P<0.001 

r=0.421* 
P<0.001 

r=-0.289 
P<0.001 

r=0.400* 
P<0.001 

r=--0.070 
P=0.008 

r=0.644* 
P<0.001 

_    

Branch 4-10cm 
N = 1418 

r=0.433* 
P<0.001 

r=-0.304 
P<0.001 

r=-0.146 
P<0.001 

r=-0.334 
P<0.001 

r=--0.061 
P=0.02 

r=0.512* 
P<0.001 

r=0.593* 
P<0.001 

_   

Branch 2-4cm 
N = 1418 

r=0.411* 
P<0.001 

r=-0.284 
P<0.001 

r=-0.159 
P<0.001 

r=-0.272 
P<0.001 

r=--0.080 
P=0.003 

r=0.412* 
P<0.001 

r=0.466* 
P<0.001 

r=0.733** 
P<0.001 

_  

Branch 0-2cm) 
N = 1418 

r=0.431* 
P<0.001 

r=-0.333 
P<0.001 

r=-0.192 
P<0.001 

r=-0.286 
P<0.001 

r=--0.067 
P=0.012 

r=0.446* 
P=0.001 

r=0.494* 
P<0.001 

r=0.570* 
P<0.001 

r=0.750** 
P<0.001 

_ 



 

 

Figure 4.7. Relationship between tree height (m) and height to first bole (m) for all trees (r = 0.790, = 

1418, p < 0.001). 

 

 

Figure 4.8. Relationship between DBH and tree height (m) for all trees (r =0.751, n = 1418, p<0.001). 



 

 

Figure 4.9. Relationship between DBH and height to first bole (m) for all trees (r = 0.591, n = 1418, 

p<0.001). 

 

Figure 4.10. Relationship between DBH and crown area (m2) for all trees (r = 0.606, n = 1418, 

p<0.001). 

 



 

Density of trees above ≥ 10cm DBH (ha) did not correlate with any other vegetation 

variable (table 4.6).  

 

Table 4.6. Summary of Spearmans Rho Correlations on tree density and all continuous vegetation 

variables. 

 

 DBH (cm) 
N= 10 

Height (m) 
N = 10 

Height to first bole (m) 
N = 10 

Crown Area (m2) 
N = 10 

Connectivity (%) 
N=10 

Tree Density (ha) 
N = 10 

r=0.004 
p=0.990  

r=0.100 
p=0.783 

r=0.115 
p=0.753 

r=-0.043 
p=0.906 

r=-0.125 
p=0.730 

 

4.1.4: Variation in tree heights and tree connectivity 

Because hylobatids prefer tall trees with a well-connected canopy for travel, tree 

heights and connectivity were placed into categories to assess preferred height by the 

species’. Number of tall trees >30m differed significantly across the land units (Kruskal-

Wallis test: X2
(3) =14.12, p = 0.003). Hill forest contained a significantly higher percentage 

of tall trees (10.57%) than all the other land units. Conversely, alluvial forest habitats 

contained the lowest number of tall trees (>30m = 3.3%, Figures 4.12 and 4.13).  

Alluvial forest had the highest percentage of trees with a low canopy connectivity (73.5%; 

post hoc tests with subsequent Bonferroni correction - α’=0.0083, Table 4.7; Figure 4.14), 

whilst only approximately half (48.9-56.8%) of trees in the other three habitat types 

possesses trees with low canopy connectivity.   

Significant differences in high tree connectivity were found between alluvial and hill 

forest habitats, and alluvial and hill-swamp forest (Table 4.7, Figures 4.16 and 4.17). Hill 

forest had the highest percentage of trees with >75% connectivity (10.1%) whilst alluvial 

contained no trees within this category. Plains habitat contains only a minimal number 

of high connectivity trees (>75% = 0.4%, 50-75% = 3.3%, Figure 4.17).  

 

 

 

 

 

 



 

Table 4.7. Summary of pairwise Mann-Whitney U post hoc tests on all tree height and connectivity 

categories between the different land units. Significant P-values following sequential Bonferroni 

correction are highlighted in bold and underlined 

 Plains vs Hills 
N = 28 

Plains vs 
Alluvial 
N = 18 

Plains vs Hill-
Swamp 
N = 23 

Hills vs 
Alluvial 
N = 26 

Hills vs Hill-
Swamp 
N = 18 

Alluvial vs Hill-
Swamp 
N = 21 

 U P U P U P U P U P U P 

Tree Height 
<20m 

72.00 0.384 12.50 0.014 46.50 0.803 22.00 0.005 90.00 0.277 17.50 0.012 

Tree Height 
>20m <30m 

34.50 
 

0.008 35.00 
 

0.653 59.50 
 

0.729 21.00 
 

0.005 36.5 
 

0.001 50.5 
 

0.912 

Tree Height 
>30m 

34.00 
 

0.006 34.00 
 

0.574 59.00 
 

0.702 20.00 
 

0.003 52.50 
 

0.009 37.00 
 

0.257 

Connectivity 
<15% 

83.00 
 

0.735 10.50 
 

0.008 60.50 
 

0.779 23.00 
 

0.006 111.00 
 

0.809 9.50 
 

0.002 

Connectivity 
<25% 

53.00 
 

0.735 8.00 
 

0.003 61.00 
 

0.803 25.00 
 

0.009 65.00 
 

0.038 3.00 
 

<0.001 

Connectivity 
25 - 50% 

63.00 
 

0.193 36.00 
 

0.721 54.00 
 

0.492 33.00 
 

0.032 99.00 
 

0.468 35.00 
 

0.213 

Connectivity 
50 - 75% 

60.00 
 

0.144 28.00 
 

0.254 38.00 
 

0.089 24.00 
 

0.006 112.00 
 

0.840 12.00 
 

0.003 

Connectivity 
>75% 

 
68.00 
 

0.164 36.00 
 

0.371 45.50 
 

0.116 48.00 
 

0.007 112.00 
 

0.814 32.00 
 

0.052 

 

 
 

Figure 4.11. Tree height <20m (>10cm DBH) in each land unit. Boxes represent quartiles, whiskers 

indicate 95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 



 
 

 
Figure 4.12. Tree height >20m <30m (>10cm DBH) in each land unit. Boxes represent quartiles, 

whiskers indicate 95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 
 

Figure 4.13. Tree height >30m (>10cm DBH) in each land unit. Boxes represent quartiles, whiskers 

indicate 95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 



 
 

Figure 4.14. Tree Connectivity <25% in each land unit. Boxes represent quartiles, whiskers indicate 

95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 
 

Figure 4.15. Tree Connectivity >25% <50% in each land unit. Boxes represent quartiles, whiskers 

indicate 95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 



 

 
Figure 4.16. Tree Connectivity >50% <75% in each land unit. Boxes represent quartiles, whiskers 

indicate 95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 
 

Figure 4.17. Tree Connectivity >75% in each land unit. Boxes represent quartiles, whiskers indicate 

95 percentile values and * and ᵒ represent the extremes and outliers, respectively. 

 



In summary, hill forest habitats contain the largest trees (DBH), the tallest trees with the 

largest crown areas, the highest canopy connectivity and the largest density of trees 

compared to the other habitat types. Hill-swamp forest contains some tall trees but also 

contains a significant number of shorter trees <20m. However, trees showed high 

connectivity with neighbouring trees within this habitat. Plains forest on average has a 

low tree density with a low number of tall trees and low connectivity between trees. The 

alluvial forest habitats have a high tree density; however, these trees had a lower DBH, 

are less connected and are shorter than trees found within any of the other forest types.  

 

4.2: Hylobatid densities 

Seventy gibbon and siamang groups were identified during the study period, 

consisting of 213 recorded gibbon vocalisations and 108 siamang vocalisations. After 

mapping, this resulted in a total of 45 groups of lar gibbon (Figure 4.18), and 25 siamang 

groups identified (Figure 4.19). Sampled survey areas were calculated using QGIS 

(v.2.16.3) and all effective listening distances were based on a radius of 1km around each 

listening post. A section of plains habitat (array 1, green in figure 4.18) was removed due 

to consisting of farmland and therefore completely unsuitable for any hylobatid groups. 

Effective sampling areas differ, due to differences in distances between listening posts 

and difficult terrain and to allow all posts to be positioned at the highest point 

maximising chances of hearing all groups calling within an area (table 4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Approximate location of each gibbon vocalisations. Each coloured circle represents a 

separate identified group. Different coloured arrays represent habitat types; green = plains, red = 

hills, blue = alluvial, purple = hill-swamp. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.19. Approximate location of each siamang vocalisations. Each coloured circle represents a 

separate identified group. Different coloured arrays represent habitat types; green = plains, red = 

hills, blue = alluvial, purple = hill-swamp. 

 

 

 

 



4.2.1 Density estimation through standard triangulation method 

 

Table 4.8 and 4.9 shows results of gibbon and siamang population information as 

calculated through triangulation and described by Rawson (2011).  

 

Table 4.8. Results of triangulation method for calculating lar gibbon density within the survey area. 

 

Array 
Number 

Habitat 
Type 

Sample 
Area 
(km2) 

Raw 
Group 
Number 

Calling 
Probability 
p(call) 

Estimated 
Group density 
(group/km2) 

Upper 95% 
confidence 
interval 

Upper 95% 
confidence 
interval 

1 Plains 3.54 4 1 2.82 3.15 2.51 
2 Hills 4.91 4 0.736 2.26 2.92 1.60 
3 Hills 4.5 7 0.904 3.56 4.22 2.90 
4 Hills 4.39 7 0.694 3.45 4.26 2.63 
5 Alluvial 5.12 4 0.634 1.44 1.98 0.89 
6 Alluvial 5.01 3 0.634 1.19 1.46 0.93 
7 Hill-

swamp 
5.12 4 0.475 2.11 3.10 1.13 

8 Hills 4.61 4 0.736 1.74 2.13 1.36 
9 Hill-

swamp 
4.72 5 0.933 2.75 3.19 2.32 

10 Hill-
swamp 

4.33 3 0.475 1.99 2.80 1.02 

 

Lar gibbons were found in all sample locations, with the highest densities recorded 

within the hills habitat (3.56 groups/km2, Table 4.8). The lowest density of lar gibbons 

was recorded within the alluvial forest (1.44 and 1.99 groups/km2). Plains habitat showed 

the second highest density of lar gibbons (2.82 groups/km2), followed by hill-swamp 

areas. There was a significant difference in lar gibbon densities between all forest 

locations t(9) = 9.22, p<0.001.  

 

Table 4.9. Results of triangulation method for calculating siamang density within the survey area. 

Array 
Number 

Habitat 
Type 

Sample 
Area 
(km2) 

Raw 
Group 
Number 

Calling 
Probability 
p(call) 

Estimated 
Group density 
(group/km2) 

Upper 95% 
confidence 
interval 

Upper 95% 
confidence 
interval 

1 Plains 3.54 2 0.50 2.11 2.83 1.39 
2 Hills 4.91 2 1.00 0.82 1.05 0.58 
3 Hills 4.5 4 0.52 1.64 2.24 1.05 
4 Hills 4.39 3 0.63 1.62 2.04 1.20 
5 Alluvial 5.12 - - - - - 
6 Alluvial 5.01 2 0.67 0.40 0.74 0.40 
7 Hill-

swamp 
5.12 4 0.63 1.99 2.78 1.20 

8 Hills 4.61 4 0.52 2.52 3.39 1.66 
9 Hill-

swamp 
4.72 2 0.63 1.33 1.58 1.08 

10 Hill-
swamp 

4.33 2 1.00 0.92 1.19 0.66 

 

 



Siamang groups were found in all sample locations with the exception of one alluvial 

forest type (table 4.9). This species followed a similar pattern to the lar gibbon; with the 

highest population density recorded within hill forest habitat (2.52 groups/km2) and the 

lowest within alluvial habitat (0.44 groups/km2). However, higher densities were also 

found in the plains habitat (2.11 groups/km2). There was a significant difference in 

siamang densities between all forest areas t(9) = 5.31, p<0.001.  

Overall, hylobatid densities were highest in hill forest areas, whereas the lowest densities 

were recorded in alluvial forest types. There was no significant difference between lar 

gibbon and siamang densities overall t(18) = 2.79, p=0.968. Nevertheless, lar gibbon 

population densities were consistently higher than siamang densities in all forest 

locations with the exception of one hill forest location (mean difference 1.75 SE=0.30). 

Although lar gibbon densities were consistently higher than siamang densities, there was 

no significant relationship between the densities of these species in relation to each 

other (r = 0.442, p = 0.200 (Figure 4.19).  

 
Figure 4.20. Lar gibbon and siamang densities in all survey locations. 

 

4.2.2: Density estimates using gibbonSECR method 

Density estimates were additionally calculated using the program gibbonSECR in 

Rstudio for the two species. For both species and across all sample locations the density 

estimates followed the same pattern as triangulation, with the highest recorded 



densities of lar gibbon and siamang within hill habitats (1.46 groups/km2, 0.96 

groups/km2 respectively), and the lowest within alluvial forest (0.30 groups/km2 and 0.16 

groups/km2 respectively Tables 4.10 and 4.11). However, the calculated density 

estimates in all cases are lower than those calculated by the standard triangulation 

methods, with an order of magnitude difference of between 2.11- 4.86.  There was a 

significant difference in the densities calculated from the two different methods for both 

lar gibbons (t(18) = 6.05, p=0.023) and siamangs (t(18) = 3.06, p=0.014).   

 

Table 4.10. Density estimates of Lar gibbon calculated from both triangulation and SECR and 

showing the order of magnitude difference. 

Array Number Raw Group 
Number 

Triangulation 
Density 
Groups/km2 

SECR Density 
Groups/km2 

Order of magnitude difference 

1 5 2.82 0.58 4.86 
2 4 2.26 0.52 4.35 
3 8 3.56 1.46 2.44 
4 7 3.45 0.92 3.75 
5 4 1.44 0.37 3.89 
6 3 1.19 0.30 3.97 
7 4 2.11 0.59 3.58 
8 5 1.74 0.36 4.83 
9 5 2.75 0.98 2.81 

10 3 1.99 0.42 4.74 

 

Table 4.11. Density estimates of Siamang calculated from both triangulation and SECR and showing 

the order of magnitude difference. 

Array Number Raw Group 
Number 

Triangulation 
Density 
Groups/km2 

SECR Density 
Groups/km2 

Order of magnitude difference 

1 2 2.11 0.47 4.49 
2 2 0.82 0.29 2.81 
3 4 1.64 0.78 2.11 
4 3 1.62 0.73 2.22 
5 0 0.00 0  
6 2 0.40 0.16 2.53 
7 4 1.99 0.79 2.52 
8 4 2.52 0.96 2.63 
9 3 1.33 0.57 2.32 

10 2 0.92 0.34 2.72 

 

 

As the standard triangulation method is well known and widely used by many gibbon 

researchers, these density estimates were used to ascertain any relationships between 

hylobatid densities and vegetation variables.  



 

4.2.3: Hylobatid densities in relation to vegetation variables 

                Lar gibbon density across the 10 sites was significantly positively correlated with 

tree diameter (r = 0.701, p = 0.024), tree height (r = 0.666, p = 0.035) and crown area (r 

= 0.722, p = 0.018; Table 4.12). Additionally, lar gibbon density was significantly 

negatively correlated with frequency of trees with low connectivity <15% (r= -0.859, p = 

0.035) and a high frequency of small trees <20m (r =0.667, p = 0.031). Tree density, 

frequency of tall trees (all categories >20m) and high percentage of tree connectivity 

were not significantly correlated with gibbon density (Table 4.13).   

Siamang density per site correlated significantly positively with frequency of trees with 

high tree connectivity (r = 0.652, p = 0.041) and with tree height of between 20m to 30m 

(r = 0.641, p = 0.046). Furthermore, siamang density was significantly negatively 

correlated with frequency of trees with intermediate connectivity >50% <75% (r = -0.745, 

p = 0.013). Tree height was weakly positively correlated with siamang number, however 

no correlation was found in relation to tree diameter, crown area, tree density, low 

connectivity classes and low tree height classes (Table 4.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.12. Pearson’s correlations between predictor variables (forest characteristics) and gibbon 
and siamang densities. * signify strong correlations, ** signify Very strong correlations. 

 

Predicator Variables Gibbon Density Siamang Density 

DBH (cm) 
r = 0.701** 
p = 0.024 

r = 0.421 
p = 0.226 



Height (m) 
r = 0.666* 
p = 0.035 

r = 0.584 
p = 0.076 

Crown Area (m2) 
r = 0.722** 
p = 0.018 

r = 0.376 
p = 0.284 

Tree Density 
r = 0.088 
p = 0.809 

r = -0.020 
p = 0.957 

Tree Connectivity <15% 
r = -0.859** 
p = 0.001 

r = -0.554 
p = 0.097 

Tree Connectivity <25% 
r = -0.516 
p = 0.127 

r = -0.745** 
p = 0.013 

Tree Connectivity >25% <50% 
r = 0.502 
p = 0.139 

r = 0.620 
p = 0.056 

Tree Connectivity >50% <75% 
r = 0.573 
p = 0.084 

r = 0.652* 
p = 0.041 

Tree Connectivity >75% 
r = -0.247 
p = 0.491 

r = 0.447 
p = 0.195 

Tree Height >30m 
r = 0.049 
p = 0.892 

r = 0.387 
p = 0.269 

Tree Height >20m <30m 
r = 0.465 
p = 0.176 

r = 0.641* 
p = 0.046 

Tree Height <20m 
r = -0.677* 
p = 0.031 

r = -505 
p = 0.137 

 

4.2.4: Multiple regression analysis 

Prior to undertaking a multiple regression, any variables that were highly 

correlated to other vegetation variables were omitted as this may cause the model to 

over-parameterize. Therefore, tree diameter was omitted as this variable was highly 

correlated with most other vegetation variables (Table 4.5). This left tree density, crown 

area, height and connectivity. A backwards stepwise regression was performed, which 

removes variables which are most statistically insignificant to the model. Tree crown area 

was the most influential in determining gibbon density (model 4: F(9) = 8.7, p = 0.018, R2 

= 0.521, Figure 4.21), but the best model also included tree height (model 3; Table 4.13).  

There were no significant relationships between any variable and siamang density, 

although height somewhat influenced siamang density (Table 4.14).  

 

As connectivity and height showed the strongest influence on hylobatid densities, two 

further backwards stepwise regression analysis were performed using the height and 

connectivity classes. This was undertaken to ascertain specific constraints by the species 

regarding these variables (Table 4.15 – 4.17). 

 

Table 4.13. Stepwise Regression results of habitat variables on gibbon density. P-values highlighted 

in bold show significant relationship between density and vegetation variable.  

 

Model R R2 F P 



Model 1 
Tree Density 
Crown Area 
Height 
Connectivity 
 

0.802 0.643 2.255 0.198 

Model 2 
Crown Area 
Height 
Connectivity 

0.797 0.636 3.491 0.090 

Model 3 
Crown Area 
Height 

0.785 0.616 5.604 0.035 

Model 4 
Crown Area 

0.722 0.521 8.700 0.018 

 

Table 4.14. Stepwise Regression results of habitat variables on siamang density. P-values highlighted 

in bold show significant relationship between density and vegetation variables. 

 

Model R R2 F P 

Model 1 
Height 
Crown Area 
Connectivity 
Tree Density 
 

0.737 0.543 1.487 0.332 

Model 2 
Height 
Crown Area 
Connectivity 

0.736 0.542 2.370 0.170 

Model 3 
Height 
Connectivity 

0.687 0.472 3.126 0.107 

Model 4 
Height 

0.584 0.341 4.138 0.076 

 

The regression analyses for lar gibbon density for trees within height classes (Table 4.16) 

and connectivity classes (Table 4.18) as the independent variables showed that the 

frequency of tree <20m in height and tree connectivity <15% were the most influential 

in determining gibbon density (F(9) = 6.755, p = 0.031, R2 = 0.459, Figure 4.22, 4.23).   

In regards to siamangs, frequency of trees of between 20m and 30m in height (Figure 

4.24, Table 4.17) and tree connectivity >50% <75% were the most influential in 

determining siamang density (Table 4.19, Figure 4.25).  

Table 4.15. Stepwise Regression results of Tree Height variables on lar gibbon density. P-values 

highlighted in bold show significant relationship between density and vegetation variables. 

 

Model R R2 F P 

Model 1 
Height <20m 

0.701 0.492 1.936 0.225 



Height >20m <30m 
Height >30m 
 

Model 2 
Height <20m 
Height >20m <30m 

0.700 0.490 3.359 0.095 

Model 3 
Height <20m 

0.677 0.459 6.775 0.031 

 

Table 4.16. Stepwise Regression results of Tree Height variables on siamang density. P-values 
highlighted in bold show significant relationship between density and vegetation variables. 

 

Model R R2 F P 

Model 1 
Height <20m 
Height>20m <30m 
Height >30m 
 

0.779 0.606 3.081 0.112 

Model 2 
Height>20m <30m 
Height >30m 

0.738 0.544 4.177 0.064 

Model 3 
Height >20m <30m 
 

0.641 0.411 5.576 0.046 

 

Table 4.17. Stepwise Regression results of Tree Connectivity variables on gibbon density. P-values 
highlighted in bold show significant relationship between density and vegetation variables. 

 

Model R R2 F P 

Model 1 
Connectivity <15% 
Connectivity>25% <50% 
Connectivity>50% <75% 
Connectivity >75% 
 

0.880 0.774 4.293 0.071 

Model 2 
Connectivity <15% 
Connectivity >25% <50% 
Connectivity >75% 

0.880 0.774 6.868 0.023 

Model 3 
Connectivity <15% 
Connectivity >75% 
 

0.878 0.772 11.826 0.006 

Model 4 
Connectivity <15% 

0.859 0.737 22.450 0.001 

 

 
Table 4.18. Stepwise Regression results of Tree Connectivity variables on Siamang density. P-values 

highlighted in bold show significant relationship between density and vegetation variables. 
 

Model R R2 F P 

Model 1 
Connectivity <15% 
Connectivity <25% >50% 
Connectivity >50% <75% 

0.794 0.630 2.127 0.215 



Connectivity >75% 
 

Model 2 
Connectivity <15% 
Connectivity >50 <75% 
Connectivity >75% 

0.787 0.619 3.252 0.102 

Model 3 
Connectivity <50% >75% 
Connectivity >75% 
 

0.753 0.568 4.593 0.053 

Model 4 
Connectivity >50% <75% 

0.652 0.426 5.930 0.041 

 

 

 

 

Figure 4.21. Significant linear relationship between lar gibbon density and tree crown area (m2). 

 



 
 
Figure 4.22. Significant negative linear relationship between lar gibbon density and tree connectivity  
<15%. 
 
 

 
 

Figure 4.23. Significant negative linear relationship between gibbon density and tree height <20m. 

 
 



 

Figure 4.24. Significant negative linear relationship between siamang density and tree connectivity 

between 50-75%. 

 

Figure 4.25. Significant negative linear relationship between siamang density and tree height 

between 20-30m. 

 

 



4.2.5: Relative density of hylobatids 

The relative density of siamangs was calculated (siamang density/lar gibbon 

density) to ascertain if the number of lar gibbon groups within an area had any effect on 

the number of siamang groups present within a survey area. There was a significant 

difference in the relative density of siamangs between survey areas (t(9)= 4.570, p = 

0.001) and a linear regression revealed that relative siamang density was strongly 

influenced by lar gibbon density (F = (1,8) = 27.641, p = 0.001, R2 = 0.776). Figure 4.26 

shows that the relative density of siamangs is highest in the hill habitat, where gibbon 

density is highest, and lowest within alluvial forest, where gibbon density is also lowest.  

 

 

 

Figure 4.26. Relative Density of Siamang in relation to gibbon density between the four land units. 

 

4.2.6: Calling probabilities 

             Calling probabilities can have an effect on density estimations, and low calling 

probabilities can result in under-represented density estimates. Therefore, correlations 

between calling probabilities and gibbon densities were undertaken for all survey areas 

to assess the likelihood that calling probability may affect the density estimates. There 

were no significant correlations between densities and calling probabilities for either the 



lar gibbon (r =-0.340, p = 0.337) or the siamang (r = -0.587, p = 0.074). Hence, the density 

estimations for lar gibbon and siamang can be presumed reliable.  

 

Chapter 5: Discussion 

This study investigated forest characteristics and hylobatid densities across 

varying types of forest; in terms of habitat and structure. All four identified land types 

showed differences in vegetation structure, especially in regards to stem diameter, tree 

height, height to first bole, crown area and connectivity. Forest classified as hill forest 

contained trees with the largest average diameter (21.0cm), highest average height 

(18m), highest frequency of tall trees >20m (41.2%), trees with the largest crown area 

(84.4m2) and the highest percentage of canopy connectivity >25% (86.6%). Alluvial forest 

types contained trees with the smallest average diameter (17.8cm), lowest average 

height (13m), highest frequency of short trees (81.2%) lowest frequency of tall trees 

>20m (18.4%), smaller crown areas (62.8m2) and least frequency of tree canopy 

connectivity >25% (21.0%). Plains habitat contained trees with large diameters 

compared to hill forest (21cm), but contained significantly less tall trees >20m (29.5%), 

small crown areas comparable to alluvial (63.9m2) and with an average tree height of 

16.8m. Hill-swamp habitat contained trees with large diameters (18.2cm), overall tree 

height comparable to plains habitat (16m), the smallest crown areas (58.9m2) and a large 

canopy connectivity >25% (74.6%). Frequency of tall trees were similar to that of plains 

habitat (24.7%). Differences due to these structural aspects between forest types 

influenced hylobatid densities, with highest densities found in the hill forest and lowest 

densities within the alluvial habitat for both species. This suggests that it is possible to 

extrapolate from current wide-scale land unit descriptions to predict gibbon densities in 

structurally similar habitats.  

 

5.1 Differences in forest structure between habitat types 

All four identified land units showed significant differences between tree 

variables and vegetation structure, with the largest differences seen in stem diameter, 

tree height, height to first major bole, crown area and canopy connectivity. There is a 

significant difference in the diameter of trees between habitat types, with both hill and 

plains forest showing a larger average diameter than both alluvial and hill-swamp forest, 

but equal to plains habitat. However, trees across all areas showed small stem diameters 



in comparison to expected stem diameter size of primary undisturbed lowland forest, 

originally identified through vegetation studies by Laumonier (1997). This study 

identifies average tree height in hills and plains habitats between 25-30m, with emergent 

trees reaching 50m in height. Large diameters generally denote tree age, irrespective of 

species. Small tree saplings must first grow vertically, reaching the canopy and gaining 

access to light to photosynthesise, prior to using resources for trunk and branch growth, 

thus older trees tend to have a larger diameter. It is apparent from the study that many 

trees located within the study area are relatively young and in general small, with few 

trees with diameters >60cm existing within the area. A study in Sikundur assessing 

vegetation structure 22 years’ post logging (Priatna et al. 2004) showed 67.6% of trees 

had diameters of 10-20cm and only 17% with diameters 21-30cm within a 2ha plot.  

Hill forests show the largest percentage of trees with a diameter >60cm (7.33%), 

though this is still relatively low indicating more secondary, regenerative forest is still 

present, and that although many areas are showing signs of regeneration, the process is 

very much still ongoing. Alluvial forest was found to possess the lowest average tree 

diameter (17.8cm) with only 3.61% of trees within this land unit having a tree diameter 

>60cm. Nevertheless, all habitat types possessed a few trees with large diameters; the 

largest found in hill-swamp (121cm), followed by plains (116.6cm), hills (113cm) and 

alluvial (95.5cm). This provides evidence of remnant primary forest existing within the 

area. Unfortunately, the rare presence of such trees reflects the amount of disturbance 

this forest has undergone, and the considerable timescale needed in order to regain 

comparable measurements to undisturbed primary rainforest.  

Frequency of tall trees between land units differed significantly, with the hill forest 

containing the largest percentage of large trees (41.45% >20m) whilst alluvial contained 

the lowest percentage of trees >20m (18.4%) and the highest percentage of trees <20m 

(81.22%). Tree height is a significant factor in forest structure in regards to supporting 

highly arboreal primates such as gibbons and siamangs (Hamard et al. 2010). Cheyne et 

al (2013) have shown gibbons prefer to travel in high canopies and will avoid low 

canopies if possible. As such, hill forest containing the largest density of gibbon groups, 

had significantly greater frequencies of trees between 20-30m (30.58%) and >30m 

(10.57%), with plains and hill-swamp forest containing the lowest densities of gibbon 

groups, possessing a significant proportion of trees 20-30m in height (23.5%, 18.5% 

respectively). Thus, hill forest habitats provided a more layered heterogeneous canopy 

structure, preferred by gibbon and siamang species. Tree heights overall were low, with 



the majority of trees in all land units not exceeding 30m in height. From 1418 trees 

sampled across the four forest habitat types, only eight trees reached a height above 

45m; seven found within hill forest and one in the plains habitat. This shows a stark 

difference in comparison to Laumonier’s study (1997), where Sumatran lowland forest 

contained a mean canopy height of 25-30m, with emergent trees between 45-55m. Only 

a single tree was recorded >50m (51.2m) which was located within the hill-swamp forest. 

These reduced tree heights and low numbers of tall emergents, appear to reflect 

Sikundur’s logging history and disturbance levels. The once tall emergent trees have 

been harvested, and secondary regrowth has not yet had a significant amount of time to 

reach former primary forest heights. Even so, the presence of these reduced height 

emergent trees represents regeneration within these areas, and if anthropogenic 

pressures remain absent, demonstrates the potential for the forest to regain its original 

height.  

The connectivity of individual trees is an important component of habitat 

preference for the persistence of gibbon and siamangs in forest habitats. Brachiation, 

the most frequently used form of locomotion by these species requires a connective 

canopy which allows travel to essential food resources and avoids using other less energy 

inefficient modes of travel and ground dwelling predators (Anderson et al. 2007). A 

sufficient amount of tree connectivity allows the formation of arboreal pathways, and  

recent studies have shown that canopy cover significantly influenced the density of 

gibbons within forest habitats (Hamard et al. 2010; Phoonjampa et al. 2011). Hill and hill-

swamp habitat have significantly higher tree connectivity than other habitat types; 

higher frequency of trees within the hill forest showed connectivity between 50-75% 

(42.64%). Tree crown area within the hills habitat was also significantly larger than other 

land units. It would be expected that larger, older, taller trees would have a more 

established crown area and therefore a higher level of connectivity, whereas younger 

trees will be expected to possess a smaller crown area. Indeed, hill forest contains the 

largest and tallest trees. The alluvial and plains forest contains shorter trees which have 

smaller crown areas and a less well connected canopy, relating to the smallest gibbon 

densities recorded there. Priatna et al (2004) showed logging caused severe damage to 

Sikundur’s forest canopy, with a recorded canopy gap size of 6200m2 within a 2ha plot 

four years after logging. After 18 years, canopy recovery had reduced gaps within the 

area to 4920m2, a rate of 1.14% in-filling per year. It is suggested that at this rate of 

recovery, the canopy at Sikundur would reach a canopy cover similar to primary forest 



in 35 years. In comparison, canopy gaps in undisturbed lowland primary forest in 

Malaysia make up only 10-17% of the entire forest canopy (Whitmore 1984). 

Density of trees showed little variation across habitat types, with only a significant 

difference found between plains (360trees/ha) and alluvial (496trees/ha). This suggests 

that although the forest had a relatively low tree height for a Sumatran lowland forest, 

tree regeneration seems to be successful, with many trees having already reached 

substantial heights and stem diameters >10cm. Twenty-two years after logging, Priatna 

et al (2004) found that within the 2ha plot, tree number had reached 1145 trees in 

comparison to 837 trees found only four years post logging. Overall tree density does 

not necessarily signify more suitable forest for arboreal primates, as lower tree height 

classes are unsuitable as they are too small and weak to sustain the weight needed for 

locomotion. However, a higher percentage of tall trees (>20m) was identified in hill 

(41.15%), plain (29.48%) and hill-swamp forests (24.73%) which are required by gibbon 

species for travel, feeding and providing safe sleeping sites. 

This study has shown that areas of primary forest still exist within Sikundur, albeit in low 

densities. Nonetheless, the effect of historical logging has had a large impact on the 

structure of the vegetation. Structure measurements within the area in 2000 (22 years 

post logging) has shown recovery is ongoing, with increases in tree species and tree 

density. Priatna et al (2004) estimated that the forest will require at least 56 years post 

logging to show features which will resemble an undisturbed primary forest.  

 

5.2 Hylobatid density surveys 

The results indicate that healthy populations of both lar gibbon and siamang 

populations persist within the Sikundur region; as all density estimates found during the 

study are within the mid-range of published density estimates for the species, in 

comparison to field sites with similar forest (Table 5.1). Moreover, it shows that the 

auditory sampling method is replicable. Lar gibbons are found within all habitat types 

surveyed and always at higher densities than siamangs, although lar gibbon groups do 

not negatively affect siamangs and densities were not correlated. Both gibbon and 

siamang densities were greatest within the hill forest, which possesses the most 

stratified, structurally complex uninterrupted canopies that have been found to be 

preferred by gibbon species in other areas. Alluvial forest, possessing lower, more 

disturbed and less structurally complex forest with a high frequency of canopy gaps, 

holds the lowest gibbon densities. Results show that the carrying capacity of this 



historically disturbed, rejuvenating forest is greater for lar gibbons than that for 

siamangs. Lar gibbons seem to fair better. This may be due to their reduced body size 

enabling them to cross weaker, less well connected canopies, and thus are able to access 

food sources, sleeping trees and travel routes potentially inaccessible to siamangs. The 

larger bodied siamang requires larger, more structurally robust canopies to allow travel, 

and is therefore more limited within the area. However, the highest density of lar 

gibbons found in an area are comparable to the highest density of siamangs, showing 

the sympatric nature of these species and their ability to co-exist. 

The ratio of species densities are comparable to range-wide densities; gibbons tend to 

increase from southern to northern latitudes on Sumatra, Borneo and Peninsular 

Malaysia, and contrarily, siamang tend to decline south to north (O’Brien et al. 2003). 

Sikundur is located at the northern extreme of their range, where gibbons are at their 

highest and siamang lowest densities, and results from this study concur. 



 

Table 5.1. Group Density Estimates of lar gibbons and siamangs showing comparisons from this study and past studies 

Species Group Density 
(groups/km2) 

Habitat Type Site Reference 

Lar Gibbon Hylobates lar 1.32 Lowland (alluvial) Sikundur, Sumatra This study 
Lar Gibbon Hylobates lar 2.82 Lowland (plains) Sikundur, Sumatra This study 
Lar Gibbon Hylobates lar 2.75 Lowland (hills) Sikundur, Sumatra This study 
Lar Gibbon Hylobates lar 2.28 Lowland (hill-swamp) Sikundur, Sumatra This study 

Lar Gibbon Hylobates lar 2.85 Lowland (alluvial) Sikundur, Sumatra Consiglio (2015) 
Lar Gibbon Hylobates lar 0.44  Lowland (plains) Sikundur, Sumatra Consiglio (2015) 

Lar Gibbon Hylobates lar 0.86 Lowland (hills) Sikundur, Sumatra Consiglio (2015) 

Lar Gibbon Hylobates lar 2.6  Phu Khieo Wildlife Sanctuary, Thailand  

Agile Gibbon Hylobates agilis 1.7  Sabangau catchment, Kalimantan Hamard et al. (2010) 

Agile Gibbon Hylobates agilis 2.0 Lowland forest Kerinci-seblat National Park, Sumatra Yanuar (2009) 
Agile Gibbon Hylobates agilis 3.8 Hill dipterocarp Kerinci-seblat National Park, Sumatra Yanuar (2009) 

Bornean Agile gibbon Hylobates agilis 
albibarbis 

2.16  Sabangau catchment, Kalimantan Buckley et al. (2006) 

Agile gibbon Hylobates agilis 1.4 Lowland forest BBSNP O,Brien (2003) 
Agile gibbon Hylobates agilis 2.8 Hill forest BBSNP O,Brien (2003) 

Agile gibbon Hylobates agilis 1.9 lowland Way kambas, sumatra Yanuar and Sugardjito (1993) 

Siamang Symphalangus syndactylus 0.40 Lowland (alluvial) Sikundur, Sumatra This study 
Siamang Symphalangus syndactylus 2.11 Lowland (plains) Sikundur, Sumatra This study 
Siamang Symphalngus syndactylus 1.65 Lowland (hills) Sikundur, Sumatra This study 
 1.41 Lowland (hill-swamp) Sikundur, Sumatra This study 

Siamang  
Symphalangus syndactylus 

1.52 Lowland (alluvial) Sikundur, Sumatra Consiglio (2015) 

Siamang Symphalangus syndactylus 0.45 Lowland (plains) Sikundur, Sumatra Consiglio (2015) 

Siamang Symphalangus syndactylus 0.67 Lowland (hills) Sikundur, Sumatra Consiglio (2015) 

Siamang Symphalangus syndactylus 2.1 Hill dipterocarp Kerinci-seblat National Park, Sumatra Yanuar (2009) 
Siamang Symphalangus syndactylus 5 Lowland forest Kerinci-seblat National Park, Sumatra Yanuar (2009) 

Siamang Symphalangus syndactylus 10.3 Lowland forest BBSNP O’Brien (2003) 
Siamang Symphalangus syndactylus 4.2 Hill forest BBSNP O’Brien (2003) 

Siamang Symphalangus syndactylus 2.8 lowland Way kambas, sumatra Yanuar and Sugardjito (1993) 

Siamang  Symphalangus syndactylus 7 lowland ketambe Mackinnon & Mackinnon (1980) 



5.3 Hylobatid Densities estimations through triangulation method 

Auditory sampling is a technique widely used, especially in cases of unhabituated 

primates where line transects are not possible due to limited visual detections. Fixed 

point counts using auditory sampling do however, have a number of biases associated 

with this method (Hamard et al. 2010; Rawson et al. 2010). Firstly, the method excludes 

lone animals from the estimate as only duets are taken into account in the analysis. A 

study of Bornean agile gibbons Hylobates albibarbis in West Kalimantan by Cowlishaw 

(1992) estimated lone animals make up approximately 5.5% of the total population. As 

this only affects individual density estimates, and not density of groups/km2 this remains 

unchanged in this study. Second, auditory sampling is thought to be dependent on 

weather conditions, and factors such as rain are known to influence singing frequency 

and start times of singing bouts (Brockelman & Ali, 1987; Brockelman & Srikosamatara, 

1993, O’brien et al. 2004, Cheyne et al. 2013, Hamard et al. 2010). To prevent bias of 

data, surveys were avoided on rainy mornings and any mornings following a night of 

heavy rain. Rain only affected one of the study areas (in alluvial forest) reducing the 

survey to three days in this location. Furthermore, Brockelman and Srikosamatara (1993) 

found wind affected singing in siamangs (but not gibbons). Wind conditions were calm 

on every survey morning, and therefore this factor was not likely to have an effect on 

singing frequency. Although detailed weather conditions were not collected, no other 

extreme weather conditions affected data collection or survey effort. Duration of time 

spent at each vocal array extended for at least half an hour past the last vocalisation 

heard to avoid missing any groups delaying singing due to any adverse weather 

conditions. Several studies (Brockelman and Srikosamatara 1993; Geissmann and Nijman 

2006) have suggested that low densities of gibbons within an area (<2 groups/km2) may 

affect singing, as singing can be stimulated by duets from neighbouring groups. No 

correlation was found between calling probability p(1) and density of either gibbon or 

siamang in this study and calling probabilities over the four-day period were relatively 

high (siamang= 0.52-1, gibbon 0.48-1). It has been suggested that for reliable density 

estimates, calling probability should be ≥0.5 (Brockelman and Ali 1987). Four days were 

conducted at each array (except one) and calling probability was only recorded lower 

than 0.5 on two occasions; both for lar gibbon with a value of 0.48 on both occasions. 

This value was close enough to 0.5 to warrant effective density estimates have been 

obtained through the study. Another bias associated with gibbon surveys is a non-

random survey design. This is usually due to topography; situating listening posts on high 



elevation maximises the distance to which gibbons can be heard and prevents groups 

being missed. This approach violates assumptions of random sampling designs and 

therefore cannot be extrapolated to the population as a whole (Rawson et al.2010). 

However, the most problematic issue in conducting auditory surveys for gibbons is 

calculating the area surveyed from a listening post; i.e the effective listening area. 

Brockelman and Ali (1987) avoided this issue by setting a predetermined radius around 

each listening post. Only vocalisations heard within the predetermined survey listening 

radius are counted, vocalisations heard from more than one post and triangulate are 

counted, and all vocalisations occurring outside of this listening radius are discarded. This 

raises many issues including: omitted vocalisations recorded from single posts may affect 

density estimates, additional survey effort relative to survey coverage is required, and 

bearing error is not taken into account. This study used a fixed radius of 1km and several 

measures were undertaken to limit the above bias; 1. Vocalisations heard from a single 

post were included within the analysis if located more than 500m away from any other 

identified group on the same day following guidelines used by Rawson (2010); 2. Survey 

areas were set in a grid formation adjacent to one another to maximise coverage; if 

groups were heard from two different arrays within the same approximate location, one 

of these groups was eliminated to avoid double counting, 3. The same observers were 

used throughout the whole study to limit bearing error, with two people located at each 

listening post.   

 

5.4: Hylobatid Densities estimations through SECR 

GibbonSECR designed by Kidney (2013) has provided an alternative for analysing 

visually cryptic species through auditory sampling in attempting to address some of the 

issues in the above estimation methods. For example, this model accounts for the 

imperfect detection of groups through the use of a detection function, providing a more 

reliable estimate of the effective sampling area, and allows for bearing error through the 

inclusion of a bearing error model (Kidney 2013). Additionally, it produces reliable 

model-based estimates of uncertainty for all parameters such as the Akaike Information 

Criterion (AIC) to be used for the model selection. However, use of the gibbonSECR 

model in this study produced considerably lower density estimates than calculated from 

standard triangulation, with values averaging 3.35 (SE 0.22) lower on all occasions. This 

has been observed in other studies (Cheyne, pers coms, 21st August, 2016). Reasoning 

for the lowered density estimate is unknown, though may be due to the fact that the 



program is unable to account for multiple sampling occasions and data are entered as 

one single sample period, creating a potential source of error. However, gibbonSECR is a 

promising tool which has the potential to improve the accuracy and reliability of primate 

density data. Manipulating the model in a more robust way may lead to more efficient 

data analysis and a preferred density estimation method for future density estimations. 

Studies comparing various techniques have concluded that using the manual 

triangulation method to estimate density remains an important tool for hylobatid 

surveys at present through its efficiency in locating gibbon groups using acoustic 

detection. 

 

5.5: Relationships between forest structure and gibbon density 

Hylobatids depend on the forest canopy for survival, in terms of food shelter and 

movement due to their almost total arboreality (Bartlett 2007). Hence, structural 

characteristics of the forest in terms of tree height, tree density, canopy cover and 

percentage of tall trees (as well as feeding trees) are important factors linking to 

population densities. The use of vegetation plots for forest structural analysis has proved 

efficient in identifying structural differences in forest characteristics. This is a time 

efficient method that can easily be associated with auditory sampling as a small number 

of plots can be undertaken each day after the vocal arrays in each survey area. Within 

the Sikundur survey area, gibbon groups ranged from 1 to almost 4 groups/km2, whilst 

siamangs between 0 to almost 3 groups/km2. This suggests that hylobatid density is 

tightly correlated with local habitat quality or carrying capacity of the habitat to support 

a given population density (Marshall 2010; Phoonjampa et al, 2011), and that lar gibbons 

and siamangs can be highly adaptable and flexible to environmental changes.  

Lar gibbon density was observed to be highly correlated to several vegetation 

parameters, especially tree height, crown area and canopy connectivity. This result is not 

surprising as gibbons are known to prefer to use high forest canopy layers for all activities 

(Brockelman and Ali, 1987, O’Brien et al. 2004, Hamard et al. 2010). The presence of tall 

trees within a habitat has similarly been linked to presence and densities of other 

species: Di Bitetti et al (2000) found that tufted capuchin monkeys Cebus apella nigritus 

spent the night in mature forest that contained taller trees and Phoonjampa et al (2010) 

found pileated gibbons prefer to use tall emergent trees as sleeping sites.  

Hylobatids are relatively adaptable, and have been shown to use a lower forest canopy 

following disturbance (such as logging) to their habitat (Nijman, 2001). Gibbons are 



known to use large emergent trees to conduct morning vocalisations and for sleeping 

trees. However, the frequency of very tall trees (>30m) and trees 20-30m in height and 

high frequency of tree connectivity did not relate to gibbon density in this study. The 

most significant finding is the negative correlation and relationship found between lar 

gibbons and tree heights of <20m, and connectivity of <15%. This suggests that lar 

gibbons can tolerate low frequencies of high trees and low connectivity of trees as long 

as this remains above a certain threshold. Overall tree canopy connectivity and tree 

height seem to be the most influential variables in relation to gibbon density, which is 

found to be an important factor in other study sites (Hamard et al. 2010; Phoonjampa et 

al, 2011).  

Siamang density was more influenced by trees in the height range of 20-30m and tree 

connectivity between 50-75%. Siamangs are found to live at lower canopy levels than lar 

gibbons. The majority of tree heights within Sikundur’s forest fall within this category. 

Siamangs seem to have a lower level of tolerance to low tree connectivity, as their 

densities were negatively correlated with connectivity of <25% compared to the lar 

gibbon’s seemingly ‘cut-off point’ of <15%. Siamangs are considerably larger than lar 

gibbons (Chivers 1974) which could account for the larger canopy needed to hold their 

body weight when travelling. Siamangs are also more folivorous (O’Brien et al. 2003), 

meaning they need to travel less to food resources, as edible leaves are more uniformly 

distributed than fruits. This means they can remain in lower canopy levels to reach food 

and populations can be sustained in relatively smaller forest patches. However, the 

presence of a high frequency of trees <20m in an area would prevent exploitation of the 

forest as trees would not be sufficiently strong and canopy connectivity not sufficiently 

well developed to support their larger body weight limiting arboreal travel routes. 

Whereas the smaller body size of lar gibbons means they can survive more disturbance 

as they can reach food sources located in more disturbed areas, as these smaller trees 

and less well developed canopies can hold their weight and allow arboreal movement.  

The highest densities of nearly 4 groups/km2 of lar gibbons were found within the hill 

forest areas. These areas, although showing signs of historical logging, such as large 

logging roads and a lower than average tree height, have the largest frequency of 

emergent trees, highest canopy connectivity and larger crown areas in comparison to all 

other habitats. Hill-swamp areas also have good quality habitat characteristics similar to 

hill forest, however the presence of swamp areas containing relatively small trees 

decreases available habitat for the species which is reflected in the lower densities 



recorded there. Alluvial forest has much less suitable habitat for both gibbons and 

siamangs, offering very little canopy connectivity for brachiation, and small trees 

unsuitable for sleeping and territorial vocalisations. Even without historical logging these 

areas have been a less suitable habitat choice for hylobatids.  

Although density gradients of these species are related to forest structure and 

composition, they are influenced by preferred food items (Marshall & Leighton, 2006;  

Marshall, 2009; Hamard et al. 2010). Siamangs are found to be more frugivorous on 

Sumatra in comparison to Malaysia (Palombit 1997), increasing competition with the lar 

gibbon and explaining why siamang numbers are less when living sympatrically with the 

lar gibbon. Palombit (1997) suggests that the increased frugivory in GLNP is due to 

increased feeding on strangler figs, rather than increased feeding on other fruits. These 

grow in mid-range canopy levels also explaining why siamangs are influenced by this tree 

height class. This higher availability of figs and fruiting trees in Sumatra may increase 

dietary overlap between gibbons and siamangs, and as siamangs have a larger body size 

and longer feeding bouts, this may give them a competitive advantage. However, 

Sikundur’s fruiting score is low and strangler figs are much rarer in comparison to other 

Sumatran sites in the GLNP (A. H. Korstjens pers. comm. 20th July, 2016), being more 

similar to Bornean field sites than Sumatran areas (SOCP, 2014), potentially explaining 

the lower densities of siamangs in relation to gibbons. Therefore, these hylobatids may 

be more folivorous within this forest. 

The findings of this study are comparable to other studies conducted on hylobatid 

relationships with vegetation structure, supporting the observation that hylobatids rely 

on tree height and a high level of connectivity to sustain healthy population numbers. 

Although Sikundur has been subjected to a large degree of selective logging, hylobatid 

densities within these areas have been well sustained, with densities comparable to 

other forests in Sumatra, Borneo and Malaysia (Table 5.1). A reason for this may be that 

the site is well connected to less disturbed areas of the National Park. Research has 

shown an increased ability for a habitat and associated species to recuperate if there is 

a primary, undisturbed habitat and a healthy species population within an adjacent 

habitat. As no density estimates have been undertaken within the area prior to this 

study, it is difficult to speculate the effects that logging has had on the population and 

the carrying capacity of the forest prior to the onset of logging. 

  

5.6: Implications for forest conservation 



Deforestation is still the largest threat to biodiversity and forest loss in Indonesia 

(Brun et al. 2015) and despite the protection of national park status, many lowland 

forests within Sumatra are still subjected to much illegal logging, land clearance and 

species removal (Jepson and Mulyani 2013). Due to these anthropogenic factors, few 

undisturbed primary forests exist, whereas secondary, degraded and fragmented 

habitats are continually increasing (Gibson et al. 2011). Studies assessing differences in 

population densities of species in primary and secondary forests have indicated a level 

of tolerance exhibited, with many disturbed habitats still maintaining viable levels of 

biodiversity (Berry et al. 2010). Although selective logging can generally be viewed 

slightly better than complete land clearance, damage to the forest exceeds just the felled 

tree. Johns (1988) found a tree removal rate of 3.3%, resulted in 50% of surrounding 

trees additionally destroyed from the extraction. This study has revealed that these two 

sympatric hylobatid species can not only tolerate specific levels of disturbance, but have 

the ability to recover from past large-scale logging of their habitat. Nevertheless, this is 

the first study conducted on these hylobatid populations 30 years post logging. Recovery 

of these species is impeded by the slow regeneration of tropical forests (Priatna et al. 

2004; Brockelman et al 2009) and compounded by gibbon’s slow reproductive rates and 

late age of maturity (Bartlett 2007). To ensure the long-term persistence of these species 

Indonesian government organisations will need to gain control over illegal logging and 

anthropogenic disturbances that are on-going within the national parks boundaries. 

Although this study has provided relatively stable population estimates of hylobatids 

within the lowland forest of Sikundur, the future of these primates is still relatively 

uncertain, and will depend heavily on improved conservation efforts and protection of 

these rare and decreasing forest habitats.  

 

 

 

5.7: Recommendations for future research 

Though many studies on the density and abundance of hylobatid species have 

been undertaken, relatively few of these are in Sumatra, especially within the lowland 

forests, which are quickly becoming one of the rarest habitats due to continued 

destruction. This study provided the first density estimate of the two sympatric hylobatid 

species residing within these lowland forests; the lar gibbon and the siamang. However, 

with slow reproducing primate species such as hylobatids, population trends require long 



monitoring periods, and repeated surveys within the area will provide detailed 

information on population trends in Sikundur. A repeated survey would not only monitor 

population trends, but will highlight differences in seasonal variation, and health of 

populations in the long term.  

In order to better understand habit preferences of hylobatids, additional data would be 

beneficial in understanding species preference to habitat selection. A larger amount of 

vegetation plots within each survey area may provide a better idea of habitat 

preferences. Due to a random sampling design, vegetation plots may have been placed 

in areas unrepresentative of the habitat as a whole, or areas used by hylobatids that 

contained more structurally suitable trees may have been missed. A large vegetation 

coverage by additional 25 x 25m vegetation plots may reveal insights this study may have 

missed. 

 Additionally, it would be a huge advantage in habituating a group of both lar gibbon and 

siamang in the area. Preference of sleeping trees and limitations to choice of sleeping 

site would provide an insight into restrictions within their range. Additionally, 

habituation would allow a further study on feeding behaviours. Due to the low 

productivity of this site in terms of fruit, it would be of great interest to examine the 

flexibility these species have in relation to diet, and how this relates to densities, 

abundance and group size.  

Historical and current disturbances within the area are known, however, these 

disturbances have not been quantified in any useful way to be able to analyse them. A 

study design incorporating measurements of disturbance levels within the forest would 

be of interest in relation to not only hylobatids, but other species that inhabit the area, 

and to overall effects these disturbances have on biodiversity.  

 

 

 

Chapter 6: Conclusion 

A forest’s suitability in supporting primate populations may be partially 

dependent upon the structural characteristics of its vegetation. This study provides an 

initial assessment of two species of gibbon; lar gibbon and siamang within the Sikundur 

forest, and how density of these species is affected by habitat quality and post logging 

recovery. As this study is the first large scale assessment of these species within the area, 

it is impossible to assess recovery abilities prior to heavy logging. The highest density of 



lar gibbon was 3.56 groups/km2, which is lower than a population recorded in a pristine 

mountainous forest at the Khao Soi Dao Wildlife Sanctuary, where populations reached 

5 groups/km2 (Brockelman and Srikosamatara, 1993) but comparable to many other 

Indonesian study sites. Hylobatid populations within the study area are largely 

influenced by tree height, tree crown area and a low canopy connectivity, with highest 

densities located within areas containing the tallest trees, largest crown areas and 

highest canopy connectivity. However, Sikundur’s forest is still in a post logging recovery 

stage, with a lower than average canopy height and emergent trees, predicted to reach 

a recovery level similar to primary forest within a further 35 years (Priatna et al. 2004). 

Nonetheless, it is encouraging to find that these species have survived 30 years in 

historically logged, recovering forest. With further repeated population studies within 

this area, population trends and recovery rates can be ascertained, which will provide 

essential information in aiding the conservation of these important primate species.  
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